103-1 —Introduction Filters Design and Implementation (last updated: May 2024)

Dr. Norbert Cheung’s Series
I
Electrical Engineering

Level 1 Topic no: 03-I

Introduction to Filters Design
and Implementation

Contents

1. Using prototypes to design analogue filters
Conventional Design Techniques
Approximate Numerical Integration Techniques
FIR and IIR Digital Filters
Glossary

a M~ D

Reference:
“Modern Digital Control Systems, 2" edition” Raymond G. Jacquot, Longman.

Email: norbert.cheung@polyu.edu.hk Web Site: www.ncheung.com

Page 1

mailto:norbert.cheung@polyu.edu.hk

103-I —Introduction Filters Design and Implementation (last updated: May 2024)

1. Using prototypes to design analogue filters

One good prototype filter is the Butterworth filter, which has minimum
ripple in the passband and stopband, although it does not make the tran-
sition from passband to stopband as crisply as other possible filters. The
best way to start the process is to begin with a unity-gain, unity-bandwidth
lowpass Butterworth filter of a fixed order. Typical low-order unity band-
width (1 rad/sec) Butterworth transfer functions are given in Table 5.2.

Table 5.2. Butterworth Unity-Gain, Unity-Cutoff
Frequency Transfer :

Order Hg(s)
, 1
s2 4+ 1.414s + 1
5 1
S+ 2824+ 25 + 1
4 1

st 4+ 2.6133s% + 3.4145% + 2.6133s + 1

For a lowpass filter with arbitrary cutoff frequency w,, we simply em-
ploy the lowpass transformation whereby s is replaced by s/wg, which es-
sentially frequency scales the lowpass filter:

5 — — (5.9.1)
o
For a bandpass filter with the passband centered at w, and a bandwidth
of BW rad/s we employ the bandpass transformation, which is

1 (5% + f ,
S = Bw (;) (5.9.2)

.If a highpass filter is desired, we use the highpass transformation, which
is ’

()
5= — (5.9.3)

Page 2

103-1 —Introduction Filters Design and Implementation (last updated: May 2024)

~5N
B
0.8 3
- Q0
< \v
200 IENS
= BN
E 04 ‘:‘ ~ First order
.. -
0.2 A S \ ----- Second order
[PR TO% - e Third order
ek, Azvmedm 1 Fourth order
0 0.5 1 1.5 2 2.5 3 3.5

Normalized frequency

Figure 15.20 Butterworth low-pass filter frequency response

Table 15.3 Butterworth polynomials in quadratic form

Ordern Quadratic factors

s+ 1

§2 4+ 25 +1

+DEE+s+1D)

(s2 4 0.7654s 4+ 1)(s> + 1.8478s + 1)

(s + (s + 0.6180s + 1)(s% + 1.6180s + 1)

LS I P R N

Example 5.1. Consider a second-order bandpass filter with a bandpass
frequency of 10 rad/s and a Q of 5 with the continuous-time transfer function

Y(s) 2s
T UGs) " s+ 2 + 100 (a)
If we cross-multiply the transfer function, we get
(s* + 25 + 10)Y(s) = 2sU(s)
Inversion of the indicated transform yields a differential equation description
y oy du

— 4
a@r2 2 dt dt (b)

+ 100y = 2

An alternative description is that of the impulse response function, which
is the inverse Laplace transform of the transfer function of (a). This in-

version can be accomplished by adding a constant term to the numerator
of (a) and then subtracting a term of the same size upon completing the
square in the denominator

s+ 1) 2 V99
(s + 12 +99 V9 (s + 1) + 99

Using the appropriate table entries in Appendix A, the impulse response
function is

‘ 2¢~ " cos \/99t —
h(t) = {O

H(s) =

2
V99

e~ "sin V99 ¢ ; i g ©

The frequency response of this filter is

. 2jo
- = . fr— d
H(](.IJ) H(S)|s=jw —w? + 2](_._) + 100 ()

Page 3

103-I —Introduction Filters Design and Implementation (last updated: May 2024)

2. Conventional design techniques

General filter function in s-domain

" If the filter described by relation (5.2.1) has numerator and denomi-
nator polynomials of equal order, long division must be carried out to give

a constant plus a remainder proper polynomial ratio. The result is of the
form

Cn_lsnvﬁ‘l + -+ ClS + CO _ Y(S)
SV a, SN e+ s +oay U(S)

H(s) = b, + (5.2.4)

If we now define a new response variable W(s) by the transfer function
relation |

W(s) 1
Uls) 8"+ ay_s" 1+ - 4+ a5 + aq

(5.2.5)

and thus the output relation is
Y(s) = bUG) + (Coers™ b+ -+ oo + W) (5.2.6)

Relation (5.2.5) could be realized as a cascade of integrators with feedback
to create the denominator dynamics as illustrated in the lower half of Fig.
5.1. Relation (5.2.6) can be thought of as a feedforward of the input U(s)
and the outputs of the integrators as illustrated in the upper portion of
Fig. 5.1. One common way to convert the continuous-time filtering of Fig.
5.1 to a digital filter would be to change the signals in the block diagram
to z-domain signals and to replace the integrator (1/s) blocks by approxi-
mate discrete-time integrators. In the following section we explore several
approximate integration algorithms. | "

Page 4

103-I —Introduction Filters Design and Implementation (last updated: May 2024)

o b Y(s)
Cn—l Cl A

SnW(S) A A
uls) [+ 1 1 | W_(S)
A s B i o

:
-Ap-] ==
e
-ao =

Figure 5.1. Phase-variable filter realization.

Example 5.2. The filter examined in Example 5.1 had a transfer function
2s _ Y(s)
s2 4+ 25 + 100 U(s)
From relation (5.2.5) the forward dynamics are described by
Wis) 1
Uis) s+ 25 + 100

and the output equation from (5.2.6) is Y(s) = 2sW(s). These dynamics
are represented in Fig. 5.2.

H(s) =

Uls) * 1 L _Wis)
S S
-7 |
-100

Figure 5.2. Bandpass filter realization.

Page 5

103-I —Introduction Filters Design and Implementation (last updated: May 2024)

3. Approximate numerical integration technigues

In this section we explore several techniques for numerical integration with
the purpose in mind of approximation of filter transfer functions. The

function we wish to approximate is represented in Fig. 5.3. The input—
output relation is

(1) = fo x(v) dr (5.3.1)

which can be thought of the area under the x(7) curve between 7 = 0 and
T = L

Forward Rectangular Integration

In Fig. 5.4 we note that the integral at time kT will be denoted as y(kT)
and that at time (k — 1)7 will be denoted as y((k — 1)7).

The area accumulated on the interval ((k — 1)T, kT is then x((k —
1)T) - T. Then the area at time kT can be thought of as the area at (k —
1)T plus the rectangular area shown in Fig. 5.4. The integration algorithm
is then

y(kT) = y((k — DT) + x((k - DT) - T (5.3.2)
This difference equation algorithm for numerical integration can be trans-
formed to give a z-domain transfer function
_ Y _ T
T Xz z -1

H(z) (5.3.3)

x(t) —— f dt = ylt)

Figure 5.3. Continuous time-domain integrator.

Page 6

103-I —Introduction Filters Design and Implementation (last updated: May 2024)

x(t)

«{kT)

_ x((k-1)T

(k-DT kT t

Figure 5.4. Forward rectangular integration.

Backward Rectangular Integration

Consider now an alternative definition for the integral approximation il-
lustrated in Fig. 5.5. With this definition the integration algorithm becomes

y(kT) = y((k — 1)T) + x(kT) - T (5.3.4)

Upon z-transformation the transfer function for this discrete-time integra-

(k-T kT t

Figure 5.5. Backward rectangular integration.

Page 7

103-I —Introduction Filters Design and Implementation (last updated: May 2024)

tor is

Y@) Tz

HZ =35 =71

(5.3.5)

which differs in the numerator from that given by forward rectangular
integration.

Trapezoidal Integration

Perhaps a better approximation to the integral can be obtained by using
both samples of the x(f) function in computation of the additional accu-
mulated area by using the trapezoidal area illustrated in Fig. 5.6.

For this approximation the additional accumulated area is the area of
the trapezoid or the algorithm becomes

T
y(kT) = y((k = DT) + 5 [x((k — DT) + x(kT)] (5.3.6)
and the associated z-domain transfer function is
Tz +1
= = 3.7
H(?) 2(2 - 1) (5:37)

This is commonly referred to as the bilinear transformation, and the method
of filter synthesis using this method is sometimes called Tustin’s method

(k-DT kT t

Figure 5.6. Trapezoidal integration.

Table 5.1. Substitutions for Various Integration Methods

Method
Forward rectangular s =(z - DT
Backward rectangular § = (z —)Tz

Trapezoidal (bilinear transformation) s =2z - DTz + 1)

Page 8

103-I —Introduction Filters Design and Implementation (last updated: May 2024)

Example 5.3. Consider the second-order bandpass filter with the passband
centered at 10 rad/s and a quality factor of Q = 5, which was illustrated
in Example 5.1. The s-domain transfer function is

YY) 2s N
CU(s) s+ 25 + 100)

Synthesize an “equivalent” discrete-time filter using the backward rectan-
gular integration method. Since the critical frequency is at 10 rad/s (1.59
Hz), a reasonable sampling frequency would be 10 Hz or the sampling

period T will be 0.1 s. The appropriate substitution from Table 5.1 would
be

H(s)

.= 10(z — 1)
z

Substitution of this relation into relation (*) yields

2[10(;’ —~ 1)]
Z

[10(2 - 1)]2 . 2[10(2 - 1)] + 100

Z

H(z) =

Cleaning up the algebra yields the transfer function

0.0909z(z — 1)
z2 — 1.0z + 0.4545

This filter has zeros at z = 0 and z = 1, while there is a complex pair of
poles at z = 0.5 + j0.4522. _
The difference equation, which is equivalent to the transfer function,

H(z) =

1S

Yk +2) = y(k + 1) — 0.4545y(h) + 0.0909u(k + 2) — 0.0909u(k + 1)

Page 9

103-1 —Introduction Filters Design and Implementation (last updated: May 2024)

Example 5.4. Consider the bandpass filter considered in Example 5.1
with transfer function

2s
s + 25 + 100
Synthesize an “equivalent” digital filter employing the bilinear transfor-

mation method and a sampling integral of T = 0.1 s,
The appropriate bilinear transformation is

H(s) =

5 = 20z — 1)
z+1
Substitution of this relation into the original s-domain transfer function
yields
40(z - 1)
z +1
H(z) = 1 2 1
Z — zZ —
400(2 " 1) + (2)(20)(2 " 1) + 100

Upon cleaning up the algebra yields a z-domain transfer function is

~0.0740(z — D)(z + 1)
T z2 — 1.111z + 0.8519

H(z)

This filter has zeros at z = 1 and z = —1 and poles at z = 0.5556 =+
j0.737. The difference equation algorithm for real-time filtering is

y(k +2) = 1.111y(k + 1) — 0.8519y(k) + 0.0740u(k + 2) — 0.0740u(k)

4. FIR digital filters

The FIR filters are also called norn-recursive filters. The re-
cursive filters use present and past values to perform com-
putations. The past values used are the previous inputs and
outputs. Since digital filters use microprocessors, the past
values are stored in the memory. Non-recursive filters use a
finite number of the past input samples, and only have
feedforward circuits and no feedback circuitry. The best way
to understand the concepts of an FIR filter is by represent-
ing it either in a graphical or mathematical form. There are
several ways an FIR filter can be represented. These differ-

Y
X(n) h (n) (n)

An expression for the FIR filter is given as follows:

N-1
y(n)= Y h(k)x(n—k)
k=0
To find the transfer function, we do the following:

Page 10

103-1 —Introduction Filters Design and Implementation (last updated: May 2024)

_ym)
=

Taking the z-transform of this expression, we get:

Y(2) = —k
H =——= hik
(2) X(2) é (k)z

The term z~' represents a delayer. To represent the FIR filter
in a direct form, we use the above expressions to derive the
structure as shown in Figure §-6.

X{(n) | Delayer Delayer Delayer
I 2-1 2-1 Z-l

h(0) h(1) h(2)

This is called a direct-form F IR filter. The above figure shows
a filter of n7length, where n is a finite number.

For example, for a filter of length 3, we write the expression
as follows:

y(n) = h(k)x(n—k)

Page 11

103-I —Introduction Filters Design and Implementation (last updated: May 2024)

Example 6.1: Direct Form

Given the transfer function of an FIR filter as H(z) = Zfl‘{: oh(m)z™", let us
consider its equivalent algorithm for the output, for example, when M = 4:

y(n) = h(@x(n) +h(Dx(m — 1) + h(2)x(n — 2)
+h3)x(n —3) + h(d)x(n — 4) (6.5)

We have already discussed one structure employed to implement this algorithm
in Chapter 5, and because the coefficients of the multipliers in it are directly
available as the coefficients i (n) in H(z), it is called the direct form I structure
and is shown in Figure 6.1.

Whenever we have a structure to implement an FIR or an IR filter, an equiv-
alent structure can be obtained as its transpose by the following operations:

1. Interchanging the input and the output nodes
2. Replacing adders by pickoff nodes and vice versa
3. Reversing all paths

Using these operations, we get the transpose of the structure of Figure 6.1
as Figure 6.2. This is known as direct form Il structure; remember that this
(direct form M) structure will be called direct form I transposed structure in the
next chapter.

X(2) -

h(0) h(1) 7h(2) h(3) Z‘(4)

7 Y

¥ Y
e ~(x) oz — Vi)

Y
=)

N
Figure 6.1 Direct form I of an FIR filter.

Page 12

103-1 —Introduction Filters Design and Implementation (last updated: May 2024)

5. |IR Digital Filters

IIR (Infinite Impulse Response) filters are recursive filters.
Unlike non-recursive filters, these filters use feedbackl to
obtain the past values of outputs and inputs. An expression
for an IR filter is:

y(m) = S atk)xtn—k)+ 3 b(k) y(n—k)
k=0 k+1
X[n} | YIn

O

O 2]
Delayer
Delayer
Xin-1] —< Yin1)

layer Delayer I

_ . -

7]

I
1
1
1
1

> <&

An example of realizing low-pass characteristics using an
IIR filter is given as follows:

y(n) =ay(n-1) + x(n)

Figure 6.12 Direct form I structure of an IIR filter.

the same as those at the output of the three delay elements of filter H, (z). Hence
we let the two circuits share one set of three delay elements, thereby reducing
the number of delay elements. The result of merging the two circuits is shown
in Figure 6.12 and is identified as the direct form I realization of the 1R filter.
Its transpose is shown in Figure 6.13. Both of them use the minimum number

of delay elements equal to the order of the IIR filter and hence are canonic
realizations.

Page 13

103-1 —Introduction Filters Design and Implementation (last updated: May 2024)

5. Glossary — English/Chinese Translation

English Chinese
analogue filter and digital filter SR RS iR as
implementation SCH

approximate numerical integration technique | EEERSEAR
FIR and IIR digital filters FIR F0 TIR $EYEiRes
butterworth filter EERATT a8

low pass filter (iR Es

high pass filter BB
bandpass filter RS
numerical integration HIERY

bilinear transformation PUEs ez

Tustin's method HEH TR A

finite impulse response B BREK SR
infinite impulse response FoBREK R RL

Page 14

