6.5. Consider a sequence

$$x[n] = \sum_{k=-\infty}^{\infty} \delta[n-4k]$$

- (a) Sketch x[n].
- (*b*) Find the Fourier coefficients c_k of x[n].

<u>Q2</u>

6.6. Determine the discrete Fourier series representation for each of the following sequences:

$$(a) \quad x[n] = \cos\frac{\pi}{4}n$$

$$(b) \quad x[n] = \cos\frac{\pi}{3}n + \sin\frac{\pi}{4}n$$

(c)
$$x[n] = \cos^2\left(\frac{\pi}{8}n\right)$$

Q3

6.11. Find the Fourier transform of

$$x[n] = -a^{n}u[-n-1] a \text{ real}$$

<u>Q4</u>

6.12. Find the Fourier transform of the rectangular pulse sequence (Fig. 6-10)

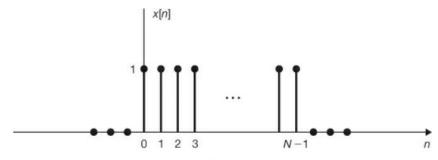
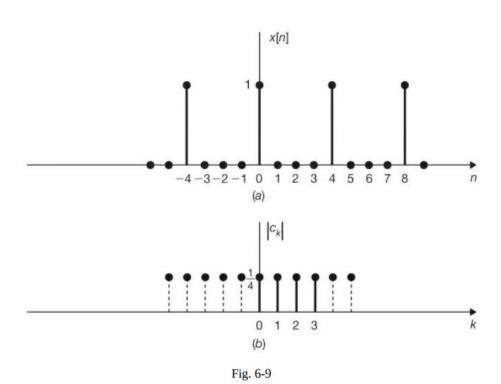


Fig. 6-10

Solution Q1

(a) The sequence x[n] is sketched in Fig. 6-9(a). It is seen that x[n] is the periodic extension of the sequence $\{1, 0, 0, 0\}$ with period $N_0 = 4$.



(b) From Eqs. (6.7) and (6.8) and Fig. 6-9(a) we have

$$x[n] = \sum_{k=0}^{3} c_k \ e^{jk(2\pi/4)n} = \sum_{k=0}^{3} c_k \ e^{jk(\pi/2)n}$$
 and
$$c_k = \frac{1}{4} \sum_{n=0}^{3} x[n] e^{-jk(2\pi/4)n} = \frac{1}{4} x[0] = \frac{1}{4} \quad \text{all } k$$

since x[1] = x[2] = x[3] = 0. The Fourier coefficients of x[n] are sketched in Fig. 6-9(*b*).

(a) The fundamental period of x[n] is $N_0 = 8$, and $\Omega_0 = 2\pi/N_0 = \pi/4$. Rather than using Eq. (6.8) to evaluate the Fourier coefficients c_k , we use Euler's formula and get

$$\cos\frac{\pi}{4}n = \frac{1}{2}\left(e^{j(\pi/4)n} + e^{-j(\pi/4)n}\right) = \frac{1}{2}e^{j\Omega_0 n} + \frac{1}{2}e^{-j\Omega_0 n}$$

Thus, the Fourier coefficients for x[n] are $c_1 = \frac{1}{2}$, $c_{-1} = c_{-1+8} = c_7 = \frac{1}{2}$, and all other c_k 0. Hence, the discrete Fourier series of x[n] is

$$x[n] = \cos \frac{\pi}{4} n = \frac{1}{2} e^{j\Omega_0 n} + \frac{1}{2} e^{j7\Omega_0 n}$$
 $\Omega_0 = \frac{\pi}{4}$

(*b*) From Prob. 1.16(*i*) the fundamental period of x[n] is N_0 = 24, and Ω_0 $2\pi/N_0 = \pi/12$. Again by Euler's formula we have

$$x[n] = \frac{1}{2} (e^{j(\pi/3)n} + e^{-j(\pi/3)n}) + \frac{1}{2j} (e^{j(\pi/4)n} - e^{-j(\pi/4)n})$$
$$= \frac{1}{2} e^{-j4\Omega_0 n} + j\frac{1}{2} e^{-j3\Omega_0 n} - j\frac{1}{2} e^{j3\Omega_0 n} + \frac{1}{2} e^{j4\Omega_0 n}$$

Thus, $c_3=-j(\frac{1}{2})$, $c_4=\frac{1}{2}$, $c_{-4}=c_{-4+24}=c_{20}=\frac{1}{2}$, $c_{-3}=c_{-3+24}=c_{21}=j(\frac{1}{2})$, and all other $c_k=0$. Hence, the discrete Fourier series of x[n] is

$$x[n] = -j\frac{1}{2}e^{j3\Omega_0 n} + \frac{1}{2}e^{j4\Omega_0 n} + \frac{1}{2}e^{j20\Omega_0 n} + j\frac{1}{2}e^{j21\Omega_0 n} \qquad \Omega_0 = \frac{\pi}{12}$$

(*c*) From Prob. 1.16(*j*) the fundamental period of x[n] is N_0 = 8, and Ω_0 = $2\pi/N_0$ = $\pi/4$. Again by Euler's formula we have

$$x[n] = \left(\frac{1}{2}e^{j(\pi/8)n} + \frac{1}{2}e^{-j(\pi/8)n}\right)^2 = \frac{1}{4}e^{j(\pi/4)n} + \frac{1}{2} + \frac{1}{4}e^{-j(\pi/4)n}$$
$$= \frac{1}{4}e^{j\Omega_0 n} + \frac{1}{2} + \frac{1}{4}e^{-j\Omega_0 n}$$

Thus, $c_0 = \frac{1}{2}$, $c_1 = \frac{1}{4}$, $c_{-1} = c_{-1+8} = c_7 = \frac{1}{4}$, and all other $c_k = 0$. Hence, the discrete Fourier series of x[n] is

$$x[n] = \frac{1}{2} + \frac{1}{4}e^{j\Omega_0 n} + \frac{1}{4}e^{j7\Omega_0 n}$$
 $\Omega_0 = \frac{\pi}{4}$

From Eq. (4.12) the z-transform of x[n] is given by

$$X(z) = \frac{1}{1 - az^{-1}} \qquad |z| < |a|$$

Thus, $X(e^{j\Omega})$ exists for |a| > 1 because the ROC of X(z) then contains the unit circle. Thus,

$$X(\Omega) = X(e^{j\Omega}) = \frac{1}{1 - ae^{-j\Omega}} \qquad |a| > 1$$

$$(6.130)$$

<u>Q4</u>

$$x[n] = u[n] - u[n - N]$$

Using Eq. (1.90), the z-transform of x[n] is given by

$$X(z) = \sum_{n=0}^{N-1} z^n = \frac{1-z^N}{1-z} \qquad |z| > 0$$
 (6.131)

Thus, $X(e^{j\Omega})$ exists because the ROC of X(z) includes the unit circle. Hence,

$$X(\Omega) = X(e^{j\Omega}) = \frac{1 - e^{-j\Omega N}}{1 - e^{-j\Omega}} = \frac{e^{-j\Omega N/2} (e^{j\Omega N/2} - e^{j\Omega N/2})}{e^{-j\Omega/2} (e^{j\Omega/2} - e^{-j\Omega/2})}$$
$$= e^{-j\Omega(N-1)/2} \frac{\sin(\Omega N/2)}{\sin(\Omega/2)}$$
 (6.132)