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1. The Discrete Fourier Series

A. Periodic Sequences:

In Chap. 1 we defined a discrete-time signal (or sequence) x[n] to be periodic
if there is a positive integer N for which

x[n + N] = x[n] all n (6.1)

The fundamental period N, of x[n] is the smallest positive integer N for
which Eq. (6.1) is satisfied.
As we saw in Sec. 1.4, the complex exponential sequence

'r[n] zef{ZIl’J"Num :Ejﬂuﬂ (6,2)

where Qg = 21/N,, is a periodic sequence with fundamental period N,,. As we
discussed in Sec. 1.4C, one very important distinction between the discrete-
time and the continuous-time complex exponential is that the signals e/“0’ are

distinct for distinct values of w,, but the sequences 20" which differ in
frequency by a multiple of 27, are identical. That is,

(,f(QO t2mkn _ PjQ(.n ‘,fl'rkn — f,js"l(«,n (6.3)
Let
ik 2w
W, [n] = e/*0" QO:E_ k=0,21,%2,... (6.4)
0

Then by Eq. (6.3) we have
Woln=Wy [n]  W[nl=Wy [0 ... W n]=Wy . 0n] .. (65)

and more generally,

W, [n) =,y [n]  m=integer 66)

Thus, the sequences W,[n] are distinct only over a range of N, successive
values of k.
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B. Discrete Fourier Series Representation:

The discrete Fourier series representation of a periodic sequence x[n] with
fundamental period Ny is given by

Ng -1 - 27
xinl= Y ¢, Q) =~ (6.7)
k=0 0

where ¢ are the Fourier coefficients and are given by (Prob. 6.2)
Cp =— 2 x[n]e” *<on (6.8)

Because of Eq. (6.5) [or Eq. (6.6)], Egs. (6.7) and (6.8) can be rewritten as

x[n]= Ct g*eon Q, 5 (6.9)
k=(Ng) N 0

Cp =— x[n] e *on (6.10)

where X, =_yo- denotes that the summation is on k as k varies over a range of
N, successive integers. Setting k = 0 in Eq. (6.10), we have

:L P
i n; ).\,[n] (6.11)

which indicates that ¢, equals the average value of x[n] over a period.

The Fourier coefficients ¢, are often referred to as the spectral
coefficients of x[n].

C. Convergence of Discrete Fourier Series:

Since the discrete Fourier series is a finite series, in contrast to the
continuous-time case, there are no convergence issues with discrete Fourier
series.

D. Properties of Discrete Fourier Series:

1. Periodicity of Fourier Coefficients:
From Egs. (6.5) and (6.7) [or (6.9)], we see that

(6.12)

which indicates that the Fourier series coefficients cj, are periodic with
fundamental period N,.
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2. Duality:

From Eq. (6.12) we see that the Fourier coefficients c; form a periodic
sequence with fundamental period N. Thus, writing ¢, as c[k], Eq. (6.10) can
be rewritten as

clk]= 2 Lx[n]e‘f""ﬂ" (6.13)
n—N(,)

0

Let n =-m in Eq. (6.13). Then

C[/\']= 2 Lx[_".’]eﬂnﬂom

m= JVO) 0

Letting k = n and m = k in the above expression, we get

cln]= ; L.r[—k]ejm”" (6.14)

k= N()) 0

Comparing Eq. (6.14) with Eq. (6.9), we see that (1/N,)x[-k] are the Fourier
coefficients of c[n]. If we adopt the notation

x[n] <, =c[k] (6.15)
to denote the discrete Fourier series pair, then by Eq. (6.14) we have

& 1
c[n] <2 — x[—k] (6.16)
N()

Equation (6.16) is known as the duality property of the discrete Fourier
series.

3. Other Properties:
When x[n] is real, then from Eq. (6.8) or [Eq. (6.10)] and Eq. (6.12) it follows
that

Cog =Cyy—g — Tk (6.17)
where * denotes the complex conjugate.

Even and Odd Sequences:
When x[n] is real, let

x[n] = x,[n] + xy[n]

Page 4




1-03-k <Discrete Fourier Transform -1>

where x,[n] and xy[n], are the even and odd components of x[n], respectively.
Let

DFS
x[n] OB, Ci

Then
x,[n] <> Re[c,] (6.18a)
x, [ < jImlc,] (6.18b)

Thus, we see that if x[n] is real and even, then its Fourier coefficients are real,
while if x[n] is real and odd, its Fourier coefficients are imaginary.

E. Parseval’s Theorem:

If x[n] is represented by the discrete Fourier series in Eq. (6.9), then it can be
shown that (Prob. 6.10)

1

= |x[n]|” = e |’ (6.19)
0 n= N[,} k= NU}

Equation (6.19) is called Parseval’s identity (or Parseval’s theorem) for the
discrete Fourier series.

6.3 The Fourier Transform

A. From Discrete Fourier Series to Fourier Transform:

Let x[n] be a nonperiodic sequence of finite duration. That is, for some
positive integer Ny,

x[n]=0 |n|> N,

Such a sequence is shown in Fig. 6-1(a). Let xND[n] be a periodic sequence

formed by repeating x[n] with fundamental period N, as shown in Fig. 6-1(b).
If we let Ny — o, we have
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x[n]

=
o
=
Sy

0
(b)

Fig. 6-1 (a) Nonperiodic finite sequence x[n]; (b) periodic sequence formed by periodic extension of
x[n].

lim XN, [n]=x[n] (6.20)

JVO - 0
The discrete Fourier series of xNO[n] is given by

_2n
NO

xy, [n]= 2 e’ Qo (6:21)
k=(Ng)

where

1 4
Cp =— 2 xy,[nle Iro (6.22a)
No n={Nn)

Since xNO[n] = x[n] for |n| < N; and also since x[n] = 0 outside this interval,
Eq. (6.22a) can be rewritten as
1 Ny ®

34 1 -
=5 D nle FN = 3 xln]eFO (6.22b)

—Nj 0 p=—=

Let us define X(Q) as

X(Q)= 2 x[n]e " (6.23)

n=—aC
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Then, from Eq. (6.22b) the Fourier coefficients c; can be expressed as

1
C’L’ =F‘X(k Q()) (6.24)

0

Substituting Eq. (6.24) into Eq. (6.21), we have

1 ikQqon
xy[nl= Y — X(kQ,) e
k=(No) 0

1 kQqn
or INg [n]= 2— 2 X(kQy) e Q (6.25)
k=(Ng)

From Eq. (6.23), X(Q) is periodic with period 2 and so is e/*". Thus, the
product X(Q) /" will also be periodic with period 27r. As shown in Fig. 6-2,
each term in the summation in Eq. (6.25) represents the area of a rectangle of

height X(kQ,)e/***" and width Q. As N, — o, Q, = 21/N,, becomes
infinitesimal (Q, — 0) and Eq. (6.25) passes to an integral. Furthermore,
since the summation in Eq. (6.25) is over N, consecutive intervals of width
Qg = 21/N,, the total interval of integration will always have a width 27.
Thus, as N, — o and in view of Eq. (6.20), Eq. (6.25) becomes

X(Q)e[ﬁ!n

e

O

—2n - 0 kQG T 21

Fig. 6-2 Graphical interpretation of Eq. (6.25).

1 N
x[n]= = f X(Q) ™™ dQ (6.26)

Since X(Q)e/**" is periodic with period 2, the interval of integration in Eq.
(6.26) can be taken as any interval of length 2.
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B. Fourier Transform Pair:

The function X(Q) defined by Eq. (6.23) is called the Fourier transform of
x[n], and Eq. (6.26) defines the inverse Fourier transform of X(Q).
Symbolically they are denoted by

oo

X(Q)=F{x[n]} = 2 x[n]e (627)

.x[n]=$“{)((§z)}=if X(Q) e’ aQ (6.28)
2mJd2n

and we say that x[n] and X(Q2) form a Fourier transform pair denoted by
x[n] == X(Q) (6.29)

Equations (6.27) and (6.28) are the discrete-time counterparts of Egs. (5.31)
and (5.32).

C. Fourier Spectra:

The Fourier transform X(€2) of x[n] is, in general, complex and can be
expressed as

X(Q) = |X(Q)|e/#® (6.30)

As in continuous time, the Fourier transform X(€2) of a nonperiodic sequence
x[n] is the frequency-domain specification of x[n] and is referred to as the
spectrum (or Fourier spectrum) of x[n]. The quantity |X(£2)| is called the
magnitude spectrum of x[n], and ¢(Q) is called the phase spectrum of x[n].
Furthermore, if x[n] is real, the amplitude spectrum |X(Q)| is an even function
and the phase spectrum ¢(£2) is an odd function of Q.

D. Convergence of X(€2):

Just as in the case of continuous time, the sufficient condition for the
convergence of X(Q) is that x[n] is absolutely summable, that is,

Y |xlnl)| <o (6.31)

n= m
E. Connection between the Fourier Transform and the z-Transform:

Equation (6.27) defines the Fourier transform of x[n] as

o

X(Q)= E x[n]e "

n=—2=

(6.32)
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The z-transform of x[n], as defined in Eq. (4.3), is given by

x

X(z)= 2 x[n]z " (6.33)

n=—=

Comparing Eqgs. (6.32) and (6.33), we see that if the ROC of X(z) contains the
unit circle, then the Fourier transform X(€2) of x[n] equals X(z) evaluated on
the unit circle, that is,

X(Q) =X@)|,_ e (6.34)

Note that since the summation in Eq. (6.33) is denoted by X(z), then the
summation in Eq. (6.32) may be denoted as X(e/Q). Thus, in the remainder of

this book, both X(Q) and X(e/*®) mean the same thing whenever we connect
the Fourier transform with the z-transform. Because the Fourier transform is
the z-transform with z = €/Q, it should not be assumed automatically that the
Fourier transform of a sequence x[n] is the z-transform with z replaced by e/%.
If x[n] is absolutely summable, that is, if x[n] satisfies condition (6.31), the
Fourier transform of x[n] can be obtained from the z-transform of x[n] with z
= &/ since the ROC of X(z) will contain the unit circle; that is, |¢/*?| = 1. This
is not generally true of sequences which are not absolutely summable. The
following examples illustrate the above statements.

EXAMPLE 6.1 Consider the unit impulse sequence 8/n].
From Eq. (4.14) the z-transform of &[n] is
J{o[nl}=1  allz (6.35)

By definitions (6.27) and (1.45), the Fourier transform of &/n] is
F{8[nl} = E d[nle " =1 (6.36)

Thus, the z-transform and the Fourier transform of 6/n] are the same. Note
that 8/n] is absolutely summable and that the ROC of the z-transform of §/n]
contains the unit circle.
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EXAMPLE 6.2 Consider the causal exponential sequence
x[n] = a"u[n] a real
From Eq. (4.9) the z-transform of x[n] is given by

X(:):l— -1 |z|>|a|

£

Thus, X(e/*?) exists for |a| < 1 because the ROC of X(z) then contains the unit
circle. That is,

i 1
X(ej!'z):ﬁ |Cl|<l (6.37)

ae

Next, by definition (6.27) and Eq. (1.91) the Fourier transform of x[n] is

x

X(Q)= 2 a"uln]e " = an"e_f“" = Eﬂ(ae—jsz)n
n= n=0

n=—rw

1 ;
=m |ae ~’Q|=|a|<l (638)

Thus, comparing Egs. (6.37) and (6.38), we have

X(Q) = X(2)|._ o

Note that x[n] is absolutely summable.

EXAMPLE 6.3 Consider the unit step sequence u[n].
From Eq. (4.16) the z-transform of u[n] is

1

1—z!

Suln]} =

|z|>1 (6.39)

The Fourier transform of u[n] cannot be obtained from its z-transform
because the ROC of the z-transform of u[n] does not include the unit circle.
Note that the unit step sequence u[n] is not absolutely summable. The Fourier
transform of u[n] is given by (Prob. 6.28)

1

F (uln]} =7d(Q) + —— |Q|=x (6.40)
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6.4 Properties of the Fourier Transform

Basic properties of the Fourier transform are presented in the following.
There are many similarities to and several differences from the continuous-
time case. Many of these properties are also similar to those of the z-
transform when the ROC of X(z) includes the unit circle.

A. Periodicity:

X(2 + 27) = X(R2) (6.41)

As a consequence of Eq. (6.41), in the discrete-time case we have to consider
values of Q (radians) only over the range 0 < Q < 27 or — 1 < Q < 7, while in
the continuous-time case we have to consider values of w (radians/second)
over the entire range — o < @ < .

B. Linearity:

ax,[n] + a,x,[n] < a X (Q) + a,X,(Q) (6.42)
C. Time Shifting:
x[n—nylee 8 x(Q) (6.43)

D. Frequency Shifting:

N x[n] < X(Q—Qp) (6.44)
E. Conjugation:

x¥[n] = X*(—Q) (6.45)
where * denotes the complex conjugate.

F. Time Reversal:

x[—n] = X(—Q) (6.46)

G. Time Scaling:

In Sec. 5.4D the scaling property of a continuous-time Fourier transform is
expressed as [Eq. (5.52)]

x(ar)-HLX £ (6.47)

|a]

a
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However, in the discrete-time case, x[an] is not a sequence if a is not an
integer. On the other hand, if a is an integer, say a = 2, then x[2n] consists of
only the even samples of x[n]. Thus, time scaling in discrete time takes on a

form somewhat different from Eq. (6.47).
Let m be a positive integer and define the sequence

B x[n/ml=x[k] if n=~km, k = integer 6.48
Tmt=10 if n # km e
Then we have
x(m,[n] «> X(mQ) (6.49)

Equation (6.49) is the discrete-time counterpart of Eq. (6.47). It states again
the inverse relationship between time and frequency. That is, as the signal
spreads in time (m > 1), its Fourier transform is compressed (Prob. 6.22).
Note that X(mQ) is periodic with period 2n/m since X(Q) is periodic with
period 27t.

H. Duality:

In Sec. 5.4F the duality property of a continuous-time Fourier transform is
expressed as [Eq. (5.54)]

X(t) == 2m x(—w) (6.50)

There is no discrete-time counterpart of this property. However, there is a
duality between the discrete-time Fourier transform and the continuous-time
Fourier series. Let

x[n] o X(Q)
From Egs. (6.27) and (6.41)
Xi62) = i x[n]e (6.51)
X(Q +_2:;) = X(€2) (6.52)

Since Q is a continuous variable, letting Q =t and n = — k in Eq. (6.51), we
have
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X@) = E x[—k] ™! (6.53)

k==

Since X(t) is periodic with period T, = 2 and the fundamental frequency w,,
=2n/T, = 1, Eq. (6.53) indicates that the Fourier series coefficients of X(t)
will be x[—k]. This duality relationship is denoted by

X(t) <>, =x[—k] (6.54)
where FS denotes the Fourier series and ¢, are its Fourier coefficients.

I. Differentiation in Frequency:

. dX(Q)
x[n] < : 6.55
nx[n] <> j 70 (6.55)
J. Differencing:
x[n] —x[n — 1] == (1 — e 7HX(Q) (6.56)

The sequence x[n] — x[n —1] is called the first difference sequence. Equation
(6.56) is easily obtained from the linearity property (6.42) and the time-
shifting property (6.43).

K. Accumulation:

5 1
2 x[k] = aX(0)8(RQ)+ —

k=—0o

XQ |Q|=x (6.57)

Note that accumulation is the discrete-time counterpart of integration. The
impulse term on the right-hand side of Eq. (6.57) reflects the dc or average
value that can result from the accumulation.

L. Convolution:
x,[n] * x [n] <= X () X,(Q) (6.58)

As in the case of the z-transform, this convolution property plays an
important role in the study of discrete-time LTI systems.

M. Multiplication:
5l wlnl« == X @0 X,(@) (6.59)

where ® denotes the periodic convolution defined by [Eq. (2.70)]

X @® X, @)=, X,6)X,(Q-6)do (6.60)
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N. Additional Properties:

If x[n] is real, let
x[n] = x,[n] + xg[n]

where x,[n] and x,[n] are the even and odd components of x[n], respectively.
Let

x[n] = X(Q) = A(Q) + jB(Q) = |X(Q)| e/ (6.61)
Then
X(—-Q) = X*(Q) (6.62)
x [n] < Re{X(Q)} = A(Q) (6.63a)
.ru[nl = jIm{X(€Q2)} = jB(L2) (6.63b)

Equation (6.62) is the necessary and sufficient condition for x[n] to be real.
From Egs. (6.62) and (6.61) we have
A(—Q) = A(QQ) B(—Q) = —B(Q) (6.64a)
X(-Q)| = |X@]  &-Q)=-69Q (6.64b)
From Egs. (6.63a), (6.63b), and (6.64a) we see that if x[n] is real and even,

then X(Q) is real and even, while if x[n] is real and odd, X(Q) is imaginary
and odd.

O. Parseval’s Relations:

a0

S .\-,[n].g[,:]:ifhx,(g) X, (—Q)dQ (6.65)

RS =

3 |xinlf =$Lx| X@f a@ (6.66)

n=-—x

Equation (6.66) is known as Parseval’s identity (or Parseval’s theorem) for
the discrete-time Fourier transform.
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S. Glossary — English/Chinese Translation

English Chinese
Discrete Fourier Transform sy e
Discrete Fourier Series B RN RE
Fourier Coefficients BEMERL
periodic sequence AR
successive values LA
spectra coefficients R
duality —EY
Parseval's Theorem MHEREL/RETR
Fourier Transform Pair EEM TS
Fourier Spectra B
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