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1-03-j <Z Transform and discrete time LTI systems -1>

1. Theinverse Z Transform

Inversion of the z-transform to find the sequence x[n] from its z-transform
X(z) is called the inverse z-transform, symbolically denoted as

x[n] = 37 4{X(2)} 4.27)

A. Inversion Formula:

As in the case of the Laplace transform, there is a formal expression for the
inverse z-transform in terms of an integration in the z-plane; that is,

3 = I X =1 y
~‘["|—r~rj_’f(<x(~)~ dz (4.28)

where C is a counterclockwise contour of integration enclosing the origin.
Formal evaluation of Eq. (4.28) requires an understanding of complex
variable theory.

B. Use of Tables of z-Transform Pairs:

In the second method for the inversion of X(z), we attempt to express X(z) as
a sum

X@=X,@+ " +X,(2) (4.29)

where X,(z), ..., X,(z) are functions with known inverse transforms x[n], ...,
x,[n]. From the linearity property (4.17) it follows that

x[n] = x [n] + - + x_[n] (4.30)

C. Power Series Expansion:

The defining expression for the z-transform [Eq. (4.3)] is a power series
where the sequence values x[n] are the coefficients of z™". Thus, if X(z) is
given as a power series in the form

o0

X[z]= 2 x[n]z™"

A=W

:---+.r[_2]:: +x[—1]z+ x[0]+ x[1]z ! + x[2]z 3 i 4.31)

we can determine any particular value of the sequence by finding the
coefficient of the appropriate power of z~!. This approach may not provide a
closed-form solution but is very useful for a finite-length sequence where
X(z) may have no simpler form than a polynomial in z~! (see Prob. 4.15). For
rational z-transforms, a power series expansion can be obtained by long
division as illustrated in Probs. 4.16 and 4.17.
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D. Partial-Fraction Expansion:

As in the case of the inverse Laplace transform, the partial-fraction expansion
method provides the most generally useful inverse z-transform, especially
when X(z) is a rational function of z. Let

Nm:k (2—2))(2—2,)

X(z)= (4.32)
D(z) (2—p)(Z—p,)
Assuming n > m and all poles p, are simple, then
2B 5 0 O e =i+i < (4.33)
Z Z =P T el A - = 2~ D;
where
X(z
Coy :X(:):*U Cy :(:_[7k) ) (434)
; Z lz=pg
Hence, we obtain
X@)=cy+e——+te,—— =g+ ¥ g — 435)
A 4 <7 Py k=1 <7 P&

Inferring the ROC for each term in Eq. (4.35) from the overall ROC of X(z)
and using Table 4-1, we can then invert each term, producing thereby the
overall inverse z-transform (see Probs. 4.19 to 4.23).

If m > n in Eq. (4.32), then a polynomial of z must be added to the right-
hand side of Eq. (4.35), the order of which is (m — n). Thus for m > n, the
complete partial-fraction expansion would have the form

m-—n n o
X@)= Y byz'+ Y €, — (4.36)
q=0 k=1 %27 P

If X(z) has multiple-order poles, say, p; is the multiple pole with
multiplicity r, then the expansion of X(z)/z will consist of terms of the form

A A A
/- I e —TL (4.37)
2=p; (z-p)° z—p)
where
A =L [ pyX@ (4.38)
e |G| ;
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2. The system functions of discrete time LTI systems

A. The System Function:

In Sec. 2.6 we showed that the output y[n] of a discrete-time LTI system
equals the convolution of the input x[n] with the impulse response h[n]; that
is [Eq. (2.35)],

yln] = x[n] = h[n] (4.39)

Applying the convolution property (4.26) of the z-transform, we obtain
Y(z) = X(2)H(z) (4.40)

where Y(z), X(z), and H(z) are the z-transforms of y[n], x[n], and h[n],
respectively. Equation (4.40) can be expressed as

H(:):M 4.41)
X(2)

The z-transform H(z) of h[n] is referred to as the system function (or the
transfer function) of the system. By Eq. (4.41) the system function H(z) can
also be defined as the ratio of the z-transforms of the output y[n] and the input
x[n]. The system function H(z) completely characterizes the system. Fig. 4-3
illustrates the relationship of Egs. (4.39) and (4.40).

»  hin] >
x[n] yln]=yln] = h(n]
X(2) Y(2)=X(z2)H(z)

P H(2) >

Fig. 4-3 Impulse response and system function.
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B. Characterization of Discrete-Time LTI Systems:

1. Causality:
For a causal discrete-time LTI system, we have [Eq. (2.44)]

hin] =0 n<0

since h[n] is a right-sided signal, the corresponding requirement on H(z) is
that the ROC of H(z) must be of the form

-
= o
| o | max

That is, the ROC is the exterior of a circle containing all of the poles of H(z)
in the z-plane. Similarly, if the system is anticausal, that is,

hin] =0 n=00

then h[n] is left-sided and the ROC of H(z) must be of the form
|:'| s rmiu

That is, the ROC is the interior of a circle containing no poles of H(z) in the
z-plane.

2. Stability:

In Sec. 2.7 we stated that a discrete-time LTI system is BIBO stable if and
only if [Eq. (2.49)]

i |h[n]\< %

The corresponding requirement on H(z) is that the ROC of H(z) contains the
unit circle (that is, |z| = 1). (See Prob. 4.30.)

3. Causal and Stable Systems:
If the system is both causal and stable, then all of the poles of H(z) must lie

inside the unit circle of the z-plane because the ROC is of the form |z| > r,,,
and since the unit circle is included in the ROC, we must have r,,, < 1.
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C. System Function for LTI Systems Described by Linear Constant-
Coefficient Difference Equations:

In Sec. 2.9 we considered a discrete-time LTI system for which input x[n]

and output y[n] satisfy the general linear constant-coefficient difference
equation of the form

N

M
E HL\‘[” - ’\J = E b‘.r[n - k] (442)

k=0 k=0

Applying the z-transform and using the time-shift property (4.18) and the
linearity property (4.17) of the z-transform, we obtain

I\I‘

M
E @z Y(z)= 2 bz *X(2)
k=0

k=0

or
N M
Y(:)E aA:,*k :X(:)EI)‘Z% (4.43)
k=0 k=0
Thus,
M
bk: .
H(z)= Y(2) _k _n (4.44)
X2 . &
s

k=0

D. Systems Interconnection:

For two LTI systems (with hy[n] and h,[n], respectively) in cascade, the

overall impulse response h[n] is given by
hin) = h,[n] * hy[n] (4.45)
Thus, the corresponding system functions are related by the product

H(z) = H(2)H,(2) RDR NR, (4.46)

Similarly, the impulse response of a parallel combination of two LTI systems
is given by

hin] = h,[n] + h,[n] (4.47)
and

Hz) = H() +Hz)  RDRNR, (4.48)
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3. Block Diagram Representation for Causal LTI Systems

The system function algebra for analyzing discrete-time block diagrams such as series,
parallel, and feedback interconnections is exactly the same as that for the corresponding
continuous-time systems in Section 9.8.1. For example, the system function for the cascade
of two discrete-time LTI systems is the product of the system functions for the individual
systems in the cascade. Also, consider the feedback interconnection of two systems, as
shown in Figure 10.17. It is relatively involved to determine the difference equation or im-
pulse response for the overall system working directly in the time domain. However, with
the systems and sequences expressed in terms of their z-transforms, the analysis involves
only algebraic equations. The specific equations for the interconnection of Figure 10.17
exactly parallel egs. (9.159)—(9.163), with the final result that the overall system function
for the feedback system of Figure 10.17 is

Y(z) H(2)
——=H(Z) = —————+—F—. 10.115
X0 1O T T HOoBo WL
S| e "
A ) hyln] e i
Hy(2) | _
h,[n] Figure 10.17 Feedback intercon-
nection of two systems.
Example 10.28
Consider the causal LTI system with system function
H@) = —— (10.116)
L= ZZ

Using the results in Section 10.7.3, we find that this system can also be described by the
difference equation

il = 3yin — 11 = xln]

x[n]

L =
'T > y([n]

= w(n]

NN

(@)
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x[n] :@ > y[n]

A

Figure 10.18 (a) Block diagram representations of the causal LTI system
in Example 10.28; (b) equivalent block diagram representation.

Example 2
Suppose we now consider the causal LTI system with system function
H(z) = ::?2:: - (1 _Ilel )(1 ) (10.117)
4 4
Let
yln] = v[n] — 2v[n — 1].
And

wln] = s[n] = v[n —1].

x[n] i t@ L i i — > G—\E > y[n]
1 Y 1 Y :
a I 5 iR T:
: L —} < win] ! ! sinl_, [ 5 E
(@
x[n] —>

(]
A
N
I
b
Y
_—>C+>
Y
=
=

FNEN

(b)
Figure 10.19 (a) Block-diagram representations for the system in Exam-

ple 10.29; (b) equivalent block-diagram representation using only one unit de-
lay element.
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Example 3

Next, consider the second-order system function

1 1
A+EHl=4z") 14tz

H(z) =

which is also described by the difference equation

.

1 1
y[n] + Zy[n =)= gy[n - 2] = x[n].

(10.118)

(10.119)

Using the same ideas as in Example 10.28, we obtain the block-diagram representation
for this system shown in Figure 10.20(a). Specifically, since the two system function

blocks in this figure with system function z~' are unit delays, we have

fln] = y[n—1],
e[n] = fln—1] = y[n - 2],

so that eq. (10.119) can be rewritten as

ynl = = 3ln = 11+ gyln = 2] + xfn),

x[n] »@ > y[n]

z
(?44—%4— f[n]
A 4
51
1 L
5 [ e[n]

(@)

x[n] +

|
| =
Bl

(b)
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> 2 + T
71
X[n] =—> _;_4 yln]
1
> 3 >( + ‘
S
l e
7

Figure 10.20 Block-diagram representations for the system in Exam-
ple 10.30: (a) direct form; (b) cascade form; (c) parallel form.

yinl = =3 ] + geln) + xnl,

which is exactly what the figure represents.

The block diagram in Figure 10.20(a) is commonly referred to as a direct-form
representation, since the coefficients appearing in the diagram can be determined by
inspection from the coefficients appearing in the difference equation or, equivalently,
the system function. Alternatively, as in continuous time, we can obtain both cascade-
form and parallel-form block diagrams with the aid of a bit of system function algebra.
Specifically, we can rewrite eq. (10.118) as

1 1
H(z) = (1 > %Z_,)(l - iz"’)' (10.120)

which suggests the cascade-form representation depicted in Figure 10.20(b) in which
the system is represented as the cascade of two systems corresponding to the two factors
in eq. (10.120).

Also, by performing a partial-fraction expansion, we obtain

1
+
3 Jiom ;Z"

H(z) =
] +

v ST

which leads to the parallel-form representation depicted in Figure 10.20(c).
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4. The Unilateral Z Transform

The unilateral (or one-sided) z-transform X,(z) of a sequence x[n] is defined
as [Eq. (4.5)]
X;(2)= 2 x[n]z™" (4.49)

n=0

and differs from the bilateral transform in that the summation is carried over
only n > 0. Thus, the unilateral z-transform of x[n] can be thought of as the
bilateral transform of x[n]u[n]. Since x[n]u[n] is a right-sided sequence, the
ROC of X|(z) is always outside a circle in the z-plane.

Basic Properties

Most of the properties of the unilateral z-transform are the same as for the
bilateral z-transform. The unilateral z-transform is useful for calculating the
response of a causal system to a causal input when the system is described by
a linear constant-coefficient difference equation with nonzero initial
conditions. The basic property of the unilateral z-transform that is useful in

this application is the following time-shifting property which is different
from that of the bilateral transform.

Time-Shifting Property:

If x[n] - Xj(z), then for m > 0,

n—mler R M= = e ) (4.50)
x[n + m] => z" X (z) —z"x[0] — z" %[1] =+« = zx[m — 1] (4.51)
The proofs of Egs. (4.50) and (4.51) are given in Prob. 4.36.

D. System Function:

Similar to the case of the continuous-time LTI system, with the unilateral z-
transform, the system function H(z) = ¥(z)/X(z) is defined under the condition
that the system is relaxed; that is, all initial conditions are zero.
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S3. Glossary — English/Chinese Translation

English Chinese
inverse z transform 2 ZER
discrete time LTI system EIRRATIA) LTI 2RE%
block diagram FIHEE]

causal system HERRS:
unilateral z transform BiD 2 i
power series expansion BIRRIY R
partial fraction expansion BBD DEUEFF
impulse response B L

linear constant coefficient - BMEHRY
difference equation ENFTE
system interconnection RAEEREE
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