1-03-h Tutorial

Question 1

5.16. Verify the time-shifting property of Fourier Transform

$$
x\left(t-t_{0}\right) \leftrightarrow e^{j \omega t_{0}} X(\omega)
$$

Question 2

5.19. Find the Fourier transform of the rectangular pulse signal $x(t)$ defined by

$$
x(t)=p_{a}(t)= \begin{cases}1 & |t|<a \tag{5.135}\\ 0 & |t|>a\end{cases}
$$

Question 3

5.20. From Q2, find the Fourier transform of the signal

$$
x(t)=\frac{\sin a t}{\pi t}
$$

Question 4

5.23. Find the Fourier transforms of the following signals:
(a) $x(t)=1$
(b) $x(t)=e^{-j \omega_{0} t}$
(c) $x(t)=e^{-j \omega_{0} t}$
(d) $x(t)=\cos \omega_{0} t$
(e) $x(t)=\sin \omega_{0} t$

Solution

Q 1
By definition (5.31)

$$
\mathscr{F}\left\{x\left(t-t_{0}\right)\right\}=\int_{-\infty}^{\infty} x\left(t-t_{0}\right) e^{-j \omega t} d t
$$

By the change of variable $\tau=t-t_{0}$, we obtain

$$
\begin{aligned}
\mathscr{F}\left\{x\left(t-t_{0}\right)\right\} & =\int_{-\infty}^{\infty} x(\tau) e^{-j \omega\left(\tau+t_{0}\right)} d \tau \\
& =e^{-j \omega t_{0}} \int_{-\infty}^{\infty} x(\tau) e^{-j \omega \tau} d \tau=e^{-j \omega t_{0}} X(\omega)
\end{aligned}
$$

Hence,

$$
x\left(t-t_{0}\right) \leftrightarrow e^{-j \omega t_{0}} \mathrm{X}(\omega)
$$

Q2

$$
x(t)=p_{a}(t)= \begin{cases}1 & |t|<a \tag{5.135}\\ 0 & |t|>a\end{cases}
$$

By definition (5.31)

$$
\begin{aligned}
X(\omega) & =\int_{-\infty}^{\infty} p_{a}(t) e^{-j \omega t} d t=\int_{-a}^{a} e^{-j \omega t} d t \\
& =\frac{1}{j \omega}\left(e^{j \omega a}-e^{-j \omega a}\right)=2 \frac{\sin \omega a}{\omega}=2 a \frac{\sin \omega a}{\omega a}
\end{aligned}
$$

Hence, we obtain

$$
\begin{equation*}
p_{a}(t) \leftrightarrow 2 \frac{\sin \omega a}{\omega}=2 a \frac{\sin \omega a}{\omega a} \tag{5.136}
\end{equation*}
$$

The Fourier transform $X(\omega)$ of $x(t)$ is sketched in Fig. 5-16(b).

Fig. 5-16 Rectangular pulse and its Fourier transform.

Q3

$$
x(t)=\frac{\sin a t}{\pi t}
$$

From Eq. (5.136) we have

$$
p_{a}(t) \leftrightarrow 2 \frac{\sin \omega a}{\omega}
$$

Now by the duality property (5.54), we have

$$
2 \frac{\sin a t}{t} \leftrightarrow 2 \pi p_{a}(-\omega)
$$

Dividing both sides by 2π (and by the linearity property), we obtain

$$
\begin{equation*}
\frac{\sin a t}{\pi t} \leftrightarrow p_{a}(-\omega)=p_{a}(\omega) \tag{5.137}
\end{equation*}
$$

where $p_{a}(\omega)$ is defined by [see Eq. (5.135) and Fig. 5-17(b)]

$$
p_{a}(\omega)= \begin{cases}1 & |\omega|<a \\ 0 & |\omega|>a\end{cases}
$$

Fig. 5-17 \sin at $/ \pi t$ and its Fourier transform.

Q4
(a) By Eq. (5.43) we have

$$
\begin{equation*}
\delta(t) \leftrightarrow 1 \tag{5.140}
\end{equation*}
$$

Thus, by the duality property (5.54) we get

$$
\begin{equation*}
1 \leftrightarrow 2 \pi \delta(-\omega)=2 \pi \delta(\omega) \tag{5.141}
\end{equation*}
$$

Fig. 5-20 (a) Unit impulse and its Fourier transform; (b) constant (dc) signal and its Fourier transform.
(b) Applying the frequency-shifting property (5.51) to Eq. (5.141), we get

$$
\begin{equation*}
e^{j \omega_{0} t} \leftrightarrow 2 \pi \delta\left(\omega-\omega_{0}\right) \tag{5.142}
\end{equation*}
$$

(c) From Eq. (5.142), it follows that

$$
\begin{equation*}
e^{-j \omega_{0} t} \leftrightarrow 2 \pi \delta\left(\omega+\omega_{0}\right) \tag{5.143}
\end{equation*}
$$

(d) From Euler's formula we have

$$
\cos \omega_{0} t=\frac{1}{2}\left(e^{j \omega_{0} t}+e^{j \omega_{0} t}\right)
$$

Thus, using Eqs. (5.142) and (5.143) and the linearity property (5.49), we get

$$
\begin{equation*}
\cos \omega_{0} t \leftrightarrow \pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right] \tag{5.144}
\end{equation*}
$$

Fig. 5-21 illustrates the relationship in Eq. (5.144).
(e) Similarly, we have

$$
\sin \omega_{0} t=\frac{1}{2 j}\left(e^{j \omega_{0} t}-e^{-j \omega_{0} t}\right)
$$

and again using Eqs. (5.142) and (5.143), we get

$$
\begin{equation*}
\sin \omega_{0} t \leftrightarrow-j \pi\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right] \tag{5.145}
\end{equation*}
$$

Fig. 5-21 Cosine signal and its Fourier transform.

