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1-03-g <Fourier Transform >

1. The Fourier Transform

A. From Fourier Series to Fourier Transform:

Let x(t) be a nonperiodic signal of finite duration; that is,
xt)=0]f>T,

Such a signal is shown in Fig. 5-1(a). Let x7. (t) be a periodic signal formed

by repeating x(t) with fundamental period T}, as shown in Fig. 5-1(b). If we
let Ty — oo, we have

lim x. (1)=x(1)

= e\ ( (5.22)

x(t)
0 t

@

Xr,(0)
| ] 1 ] ] | ] ] >
Tu T_o 'T1 0 T1 T_o To 2Tu t

2 2

Fig. 5-1 (a) Nonperiodic signal x(t); (b) periodic signal formed by periodic extension of x(t).

The complex exponential Fourier series of xTO(t) is given by

X
. koot 2n
“[[)(l): 2 (A ()I - (')() e (5.23)
k=—m 0
where
1 pTor2 s
[ =—f Y xr. (t)e kot e (5.24a)
Ty T2
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Since xy((t) = x(t) for [t| < T/2 and also since x(t) = 0 outside this interval,
Eq. (5.24a) can be rewritten as

| Ty/2 MO " | = — fken ot
Cp =— x(t)e "0 dt =— x(t) e "0 4t )
R f—r.,x: & f, (5.24b)
Let us define X(w) as

X@)= [ x(t)ye " dt (5.25)

Then from Eq. (5.24b) the complex Fourier coefficients c; can be expressed
as

1
c :T—OX(kw(,) (5.26)
Substituting Eq. (5.26) into Eq. (5.23), we have

ac

" - Jket
.\',“(I — E (-')‘ )("

E X(kwy) e ™ w, (527

x

\T“(!
_:r

or

As Ty - o, wg = 21/T; becomes infinitesimal (wy — 0). Thus, let w; = Aw.
Then Eq. (5.27) becomes

xg, (0]

,'”—bx

I C L ;k;\mr
=] > X(kaw) e Aw (5.28)

Therefore,

x(r)= lim x; (r)= lim
To—>x Aw—=( ,_;1'

z X(kAw) ™ Aw (5.29)

The sum on the right-hand side of Eq. (5.29) can be viewed as the area under
the function X(w) /', as shown in Fig. 5-2. Therefore, we obtain

¥ o 1 * jiot 3
.1(r)—3f xX(w)c dw (5.30)

which is the Fourier representation of a nonperiodic x(t).
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X(w)e'™!

_\ Area = X(k._\(‘))ejkimt Aw

X(kAwm)e/kaot

0 k Aw W
Fig. 5-2 Graphical interpretation of Eq. (5.29).
B. Fourier Transform Pair:

The function X(w) defined by Eq. (5.25) is called the Fourier transform of
x(t), and Eq. (5.30) defines the inverse Fourier transform of X(w).
Symbolically they are denoted by

X(w)=F{x(1)} = f"l x(t)e™™ dt (5.31)

2

() =F "{X(w)}= fl_ X(w)e'" dw (5.32)

and we say that x(¢t) and X(w) form a Fourier transform pair denoted by

x(1) == X(m) (5.33)

C. Fourier Spectra:

The Fourier transform X(w) of x(t) is, in general, complex, and it can be
expressed as

X(w) = | X(w)| e/ (5.34)

By analogy with the terminology used for the complex Fourier coefficients of

a periodic signal x(t), the Fourier transform X(w) of a nonperiodic signal x(t)
is the frequency-domain specification of x(t) and is referred to as the
spectrum (or Fourier spectrum) of x(t). The quantity |[X(w)| is called the
magnitude spectrum of x(t), and ¢(w) is called the phase spectrum of x(t).

If x(¢) is a real signal, then from Eq. (5.31) we get

X(~w)= f ’1 x(t)e!™ dt (5.35)
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Then it follows that

| X(—w)| = | X(w)| p(—w) = —¢g(w) (5.36b)

and

| X(—w)| = | X(w)] P(—w) = —p(w) (5.36b)

Hence, as in the case of periodic signals, the amplitude spectrum |X(w)| is an
even function and the phase spectrum ¢(w) is an odd function of w.

D. Convergence of Fourier Transforms:

Just as in the case of periodic signals, the sufficient conditions for the
convergence of X(w) are the following (again referred to as the Dirichlet
conditions):

1. x(t) is absolutely integrable; that is,

[ | x(o)|de <= (5.37)

2. x(t) has a finite number of maxima and minima within any finite
interval.

3. x(t) has a finite number of discontinuities within any finite interval, and
each of these discontinuities is finite.

E. Connection between the Fourier Transform and the Laplace
Transform:

Equation (5.31) defines the Fourier transform of x(t) as

X(@)= [ x(t)e " di (5.38)

The bilateral Laplace transform of x(t), as defined in Eq. (4.3), is given by

X(s)= [~ x(t)e "dt (5.39)

Comparing Egs. (5.38) and (5.39), we see that the Fourier transform is a
special case of the Laplace transform in which s = jw; that is,

X(s)| =F{x(1)} (5.40)

§= j
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Setting s = 0 + jw in Eq. (5.39), we have

X((r+_jw):f'_[.t‘(_l)f’f'””"’"dl :f ‘r[.r(!)f'f”'](f""" dt
or

X(o + jw)=F{x(t)e "} (5.41)

which indicates that the bilateral Laplace transform of x(t) can be interpreted
as the Fourier transform of x(t) e™,

Since the Laplace transform may be considered a generalization of the
Fourier transform in which the frequency is generalized from jw to s =0 +
jo, the complex variable s is often referred to as the complex frequency.

2. The Properties of Continuous Time Fourier Transform

A. Linearity:
ax (n) + a,x,(1) < aX (w) + a,X,(w) (5.49)

B. Time Shifting:

x(t —ty) e e /" X(w) (5.50)

Equation (5.50) shows that the effect of a shift in the time domain is simply
to add a linear term —wt, to the original phase spectrum 6(w). This is known

as a linear phase shift of the Fourier transform X(w).

C. Frequency Shifting:

eV x(t) <> X(w — wy) (3.51)

The multiplication of x(t) by a complex exponential signal ¢/®o is sometimes
called complex modulation. Thus, Eq. (5.51) shows that complex modulation
in the time domain corresponds to a shift of X(w) in the frequency domain.
Note that the frequency-shifting property Eq. (5.51) is the dual of the time-
shifting property Eq. (5.50).
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D. Time Scaling:

.r(ar)eix( 2 ] (5.52)
|a| a

where a is a real constant. This property follows directly from the definition
of the Fourier transform. Equation (5.52) indicates that scaling the time
variable t by the factor a causes an inverse scaling of the frequency variable
w by 1/a, as well as an amplitude scaling of X (w/a) by 1/|a|. Thus, the
scaling property (5.52) implies that time compression of a signal (a >1)
results in its spectral expansion and that time expansion of the signal (a <1)
results in its spectral compression.

E. Time Reversal:

x(—0 <= X(—w) (5.53)

Thus, time reversal of x(t) produces a like reversal of the frequency axis for
X(w). Equation (5.53) is readily obtained by setting a = —1 in Eq. (5.52).

F. Duality (or Symmetry):

X(f) = 2ax(—w) (5.54)

The duality property of the Fourier transform has significant implications.
This property allows us to obtain both of these dual Fourier transform pairs

from one evaluation of Eq. (5.31) (Probs. 5.20 and 5.22).

G. Differentiation in the Time Domain:

dx(r)
dt

= juX(w) (5.55)

Equation (5.55) shows that the effect of differentiation in the time domain is
the multiplication of X(w) by jw in the frequency domain (Prob. 5.28).

H. Differentiation in the Frequency Domain:

dX(m)

dw

(—Jjt)x(t) < (5.56)

Equation (5.56) is the dual property of Eq. (5.55).
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I. Integration in the Time Domain:

f? .\'(r)c!rH:rX((})é((o)-l——.l—X((u) (5.57)
= Jjw

Since integration is the inverse of differentiation, Eq. (5.57) shows that the
frequency domain operation corresponding to time-domain integration is
multiplication by 1/jw, but an additional term is needed to account for a
possible dc component in the integrator output. Hence, unless X(0) = 0, a dc
component is produced by the integrator (Prob. 5.33).

J. Convolution:

_\'](t'} * ).'3(1) <> Xl(m) Xz((u) (5.58)

Equation (5.58) is referred to as the time convolution theorem, and it states
that convolution in the time domain becomes multiplication in the frequency
domain (Prob. 5.31). As in the case of the Laplace transform, this
convolution property plays an important role in the study of continuous-time
LTT systems (Sec. 5.5) and also forms the basis for our discussion of filtering
(Sec. 5.6).

K. Multiplication:

]
27

X (0)xy (1) = — X, (w)* X, (w) (5.59)

The multiplication property (5.59) is the dual property of Eqg. (5.58) and is
often referred to as the frequency convolution theorem. Thus, multiplication
in the time domain becomes convolution in the frequency domain (Prob.
5.35).
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L. Additional Properties:
If x(t) is real, let

x(t) = x (1) + x (1) (5.60)

where X,(t) and X(¢) are the even and odd components of x(t), respectively.
Let

x(t) == X(w) = A(w) + jB(w)

Then
X(—w) = X*(w) (5.61a)
x(t) < Re{X(w)} = A(w) (5.61b)
x (1) <> jIm{X(w)} = jB(w) (5.61¢)

Equation (5.61a) is the necessary and sufficient condition for x(t) to be real
(Prob. 5.39). Equations (5.61b) and (5.61c) show that the Fourier transform
of an even signal is a real function of w and that the Fourier transform of an
odd signal is a pure imaginary function of w.

M. Parseval’s Relations:

f’:x .1'1()~)4":()-)(/). :fxy X[(). ).\’:().] di (5.62)
= I Gl o
[ xmxmdi=—[" X (0)X,(~w)do (5.63)
e oy
® 2 1 p= 2
x()|” dt =— X(w)| dw (5.64)
[ s di=—f" | X@)

Equation (5.64) is called Parseval’s identity (or Parseval’s theorem) for the
Fourier transform. Note that the quantity on the left-hand side of Eq. (5.64) is
the normalized energy content E of x(t) [Eq. (1.14)]. Parseval’s identity says
that this energy content E can be computed by integrating |X(w)|? over all
frequencies w. For this reason, | X(w)|? is often referred to as the energy-
density spectrum of x(t), and Eq. (5.64) is also known as the energy theorem.
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PROPERTY SIGNAL FOURIER TRANSFORM
x(r) X(w)
x,(0) X, @)
(1) X, )
Linearity ax,(t) + a,x,(1) a, X, @ + a,X,)

Time shifting
Frequency shifting

Time scaling

Time reversal

Duality

Time differentiation
Frequency differentiation
Integration

Convolution
Multiplication

Real signal

Even component
Odd component
Parseval’s relations

x(t—1,)

e_:m.r ,\'(I)
xlar)

x(—1)
X(1)

dx(1)
di

(—jnx(1)

ji x(1) dt
X, (£ x5(1)
X, (0)x,(1)

x(t) = x (1) + x,(1)

x( 1)
x, (1)

e Jaot, X(U))

X(w - o)

1 X(e]
lal a
X(—w)

2nx(—w)
Jo X(w)
dX(w)

dw

:ﬂr)((O)c‘i(cu)nL,l X(w)
j
X (@)X, (@)

L X.((ﬂ)* X, (W)
27 -

X(@) = A®) + jB)
X(—w) = X*@)
Re{X@)} = A®)

JIm{X(@)}= jB(w)

|1 X,A) da =] X, (W), (A) dA
j’;.r](.').t:(r) dr = %J‘ixl(a’)x:(_w) dw

[1x0f = 1x@F do

Properties of Fourier Transform
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alr) X(w)
o(r) 1
6(’ &5 I”) e jm g
| 270 (w)

e Jor 270 (w —~w,)
cosm, ! aldlw —w,) +o(w +w,)]
sinw, 1 = jald(w ~w,) —d(w +w,))

|
u(r) ad(w) +—
Jo
u(—r) adlw) — l
Jw

e “ult).a>0 '
jo +a
te “u(r),a=>0 ;,
(jw +a)”
2a

e a>0

2 2
a“ +w

- W
e

E e m: l4a

a
1 1 <a
Pa()= i 2a sin wa
0 ll>a wa
. | .
e P, (w) = |(U | a
at o [a]53
2
sgn ¢ 2.
jw
x i . 2:(
kz B( =) m(,kz 3@~ kwghwy =7

Some Common Signals and their Fourier Transform
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3. Frequency Response of Continuous Time LTI Systems

A. Frequency Response:

In Sec. 2.2 we showed that the output y(t) of a continuous-time LTI system
equals the convolution of the input x(t) with the impulse response h(t); that is,

y(t) = x(1) = h(t) (5.65)

Applying the convolution property (5.58), we obtain

Yiw) = X(w)H(w) (5.66)

where Y(w), X(w), and H(w) are the Fourier transforms of y(t), x(t), and h(t),
respectively. From Eg. (5.66) we have

Y(w)

,

Xiw)

H(w)= (5.67)

The function H(w) is called the frequency response of the system.
Relationships represented by Egs. (5.65) and (5.66) are depicted in Fig. 5-3.
Let

H(w) = |H(w)| e (5.68)

Then |H(w)| is called the magnitude response of the system, and 0y(w) the
phase response of the system.

1 H(w)
—_— +
x(t i y(t)=x(t) « hit
X(w) Y{w)=X(w)H(w)

Fig. 5-3 Relationships between inputs and outputs in an LTI system.

Then from Eq. (5.66) we have

| Yiw)| = | X(w)|| H(w)| (5.78a)

0 w) = O () + 0, (w) (5.78b)
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Hence, the magnitude spectrum |X(w)| of the input is multiplied by the
magnitude response |H(w)| of the system to determine the magnitude
spectrum |Y(w)| of the output, and the phase response 0y(w) is added to the

phase spectrum Ox(w) of the input to produce the phase spectrum 6y(w) of the

output. The magnitude response |H(w)| is sometimes referred to as the gain of
the system.

B. Distortionless Transmission:

For distortionless transmission through an LTI system we require that the
exact input signal shape be reproduced at the output, although its amplitude
may be different and it may be delayed in time. Therefore, if x(t) is the input
signal, the required output is

y(1) = Kx(t — 1) (5.79)

where t, is the time delay and K(> 0) is a gain constant. This is illustrated in

Figs. 5-4(a) and (b). Taking the Fourier transform of both sides of Eq. (5.79),
we get

Y(w) = Ke ™% X(w) (5.80)

Thus, from Eq. (5.66) we see that for distortionless transmission, the system
must have

H(w) = |H(w)| e/ = Ke it (5.81)

Thus,
|Hw)| =K (5.82a)
Oy (w) = —jor, (5.82b)

That is, the amplitude of H(w) must be constant over the entire frequency
range, and the phase of H(w) must be linear with the frequency. This is
illustrated in Figs. 5-4(c) and (d).

Amplitude Distortion and Phase Distortion:

When the amplitude spectrum |H(w)| of the system is not constant within the
frequency band of interest, the frequency components of the input signal are
transmitted with a different amount of gain or attenuation. This effect is

called amplitude distortion. When the phase spectrum 6y(w) of the system is

not linear with the frequency, the output signal has a different waveform than
the input signal because of different delays in passing through the system for
different frequency components of the input signal. This form of distortion is
called phase distortion.
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x(t) IH(w)!
A ........
: K
0 t; tr 0 (r)
(@) ()
y(t)
\l ﬁH(m)
t 0 ®
Slope = —t
(b) (d)

Fig. 5-4 Distortionless transmission.

4. Filtering

A. Ideal Frequency-Selective Filters:

An ideal frequency-selective filter is one that exactly passes signals at one set
of frequencies and completely rejects the rest. The band of frequencies passed
by the filter is referred to as the pass band, and the band of frequencies
rejected by the filter is called the stop band.

The most common types of ideal frequency-selective filters are the
following.
1. Ideal Low-Pass Filter:
An ideal low-pass filter (LPF) is specified by

|l!) l < @,

1
|H(e) =1, (5.86)

|m r = .

which is shown in Fig. 5-5(a). The frequency w,. is called the cutoff
frequency.
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2. Ideal High-Pass Filter:
An ideal high-pass filter (HPF) is specified by

|(l)

<m
¢

0
|H(w)|={l o[> w (5.87)
which is shown in Fig. 5-5(b).
3. Ideal Bandpass Filter:
An ideal bandpass filter (BPF) is specified by
1 o <|w|(<an
|H(m)]= : (5.88)
0 otherwise
which is shown in Fig. 5-5(c).
4. Ideal Bandstop Filter:
An ideal bandstop filter (BSF) is specified by
|H(w)|= . el (f) o (5.89)
1 otherwise
which is shown in Fig. 5-5(d).
IH(w)l [H(w)l
L -1
—, 0 , :) —0, 0 O, :
@ (b)
|H(w)! [H(o)l
1
-1
©w, -0, 0 W, ®, (T) -0, -0, 0 (OX o, :)
© (@)

Fig. 5-5 Magnitude responses of ideal frequency-selective filters.
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In the above discussion, we said nothing regarding the phase response of
the filters. To avoid phase distortion in the filtering process, a filter should
have a linear phase characteristic over the pass band of the filter; that is [Eq.
(5.82b)],

6, (w) = —wr, (5.90)

where t; is a constant.

Note that all ideal frequency-selective filters are noncausal systems.

B. Nonideal Frequency-Selective Filters:

As an example of a simple continuous-time causal frequency-selective filter,
we consider the RC filter shown in Fig. 5-6(a). The output y(t) and the input
x(t) are related by (Prob. 1.32)

L dy(t)
i

RC +y(t)=x(t)

Taking the Fourier transforms of both sides of the above equation, the
frequency response H(w) of the RC filter is given by

Y(w) 1 1
H(w)= = — = .
X(w) 1+ joRC 1+ jol/w,

(591)
where w( = 1/RC. Thus, the amplitude response |H(w)| and phase response
0(w) are given by

| I
. - 172
|l +j(U/(I)(, | [] +((’)/(U())~]

-1 @D

Wy

which are plotted in Fig. 5-6(b). From Fig. 5-6(b) we see that the RC network
in Fig. 5-6(a) performs as a low-pass filter.
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IH(w)!

1

T ®
+
—C vy
----- n/4
~w, 0 E"’o ®
—~/4 |--=- '
=Y PSR sE e eSS
(b)

Fig. 5-6 RC filter and its frequency response.
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3. Glossary — English/Chinese Translation

English Chinese
Fourier Transform (LSl
continuous time JELERTIA]
filtering IR
fundamental period EARTHA
Complex Fourier Coefficients SEBEHRYK
infinitesimal 2N
nonperiodic E[353):
Fourier spectra B
Fourier Transform Pair g
Convergence g
Duality =
Parseval's Theorem IRETEL/RETE
Frequency response STERNE N
amplitude distortion 2 S
phase distortion EVES=
Low pass filter RIBIRIRES
High pass filter SIEIEIRES
Band pass filter TIBISIRES
Band stop filter BRI RS
----- END -----
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