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1. Combination of Harmonically Related Signals

As defined in Chapter 1, a signal is periodic if, for some positive value of 7,
x(t) = x(t +T) forallz. (3.21)

The fundamental period of x() is the minimum positive, nonzero value of 7 for which
eq. (3.21) is satisfied, and the value wo = 27/T is referred to as the fundamental fre-
quency.

In Chapter 1 we also introduced two basic periodic signals, the sinusoidal signal

x(t) = coswot (3.22)
and the periodic complex exponential
x(f) = /™, (3.23)

Both of these signals are periodic with fundamental frequency w( and fundamental period
T = 2m/w,. Associated with the signal in eq. (3.23) is the set of harmonically related
complex exponentials

i(t) = e/*ot = IKCOTTY, | =0, £1, %2, ... (3.24)

Each of these signals has a fundamental frequency that is a multiple of w(, and therefore,
each is periodic with period 7 (although for |k| = 2, the fundamental period of ¢;(7) is a
fraction of 7). Thus, a linear combination of harmonically related complex exponentials
of the form

4o +o
() = > apeltt = > gpeit@My (3.25)

k=—o k=—o

Example 3.2

Consider a periodic signal x(r), with fundamental frequency 27, that is expressed in the
form of eq. (3.25) as

+3
x(f) = > ae™, (3.26)
k=-3
where
ap = 1,
a =a-; = l
1 L e
a = a = 1
7 -2 = 21
a =a-3 = l
3 o= 3‘
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Rewriting eq. (3.26) and collecting each of the harmonic components which have the
same fundamental frequency, we obtain

x(t) =1+ %(eﬂm g e—j21r1) i %(ej‘tm 2 e—j4m)

(3.27)
s l(ej()m s e—j61rl).
3
Equivalently, using Euler’s relation, we can write x(¢) in the form
1 2
x(t) =1+ 3 cos 27t + cosdart + 3 cos 67rt. (3.28)

xO(t) =1

X4(t) = % cos 2mt Xot) + X ()

5
:

Xo(t) = cos 4t Xo(t) + X4(t) + Xaft)

3
=

Xa(t) = % cos 6t X(t) = Xot) + x4(t) +xo(t) + xa(t)

3
=

Figure 3.4 Construction of the signal x(f) in Example 3.2 as a linear com-
bination of harmonically related sinusoidal signals.
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2. The Fourier Series Representation

To summarize, if x(¢) has a Fourier series representation [i.e., if it can be expressed
as a linear combination of harmonically related complex exponentials in the form of eq.
(3.25)], then the coefficients are given by eq. (3.37). This pair of equations, then, defines
the Fourier series of a periodic continuous-time signal:

+00 +00

x(t) = Z arel*oot = Z et HemTX (3.38)

a; = - J x(t)e kot gy = i j x(f)e Ikt gy, (3.39)
T)r T)r

Here, we have written equivalent expressions for the Fourier series in terms of the fun-
damental frequency wo and the fundamental period 7. Equation (3.38) is referred to as
the synthesis equation and eq. (3.39) as the analysis equation. The set of coefficients {a;}
are often called the Fourier series coefficients or the spectral coefficients of x(t).® These
complex coefficients measure the portion of the signal x(7) that is at each harmonic of the
fundamental component. The coefficient ay is the dc or constant component of x(#) and is
given by eq. (3.39) with k = 0. That is,

ay = % L x(t) dt, (3.40)

which is simply the average value of x(¢) over one period.
Equations (3.38) and (3.39) were known to both Euler and Lagrange in the mid-
dle of the 18th century. However, they discarded this line of analysis without having

Example 3.3
Consider the signal
x(t) = sinwyt,

whose fundamental frequency is wo. One approach to determining the Fourier series
coefficients for this signal is to apply eq. (3.39). For this simple case, however, it is
easier to expand the sinusoidal signal as a linear combination of complex exponentials
and identify the Fourier series coefficients by inspection. Specifically, we can express
sin wo? as

’ j [ i .
sinwot = Z—,e""ﬂ’ - 2—je L

Comparing the right-hand sides of this equation and eq. (3.38), we obtain

P S |
|—2j1 -1 2].7
a, =0, k# +1lor — 1.
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Example 3.4
Let

: T
x(t) = 1 + sinwot + 2 cos wot + cos (Zwot + Z)’

which has fundamental frequency w¢. As with Example 3.3, we can again expand x(f)
directly in terms of complex exponentials, so that

X(t) =1+ %[ejwot - e—jwol] o [ejwol 4 e—jwot] £ _;_[ej(ZwOH‘n'M) - e—j(2wol+1r/4)]-
Collecting terms, we obtain
X =1+(1+ L oot 4 (1= L )esoor 4 /lej("/‘” R L L)
2j 2j (2 2 '

Thus, the Fourier series coefficients for this example are

ap = 1,

1 1.
a1—<1+2—j)—1 -2—1,

1 joatty _ /2
2 4
k=3

a-3 = (1 ) j),

a; =0,

In Figure 3.5, we show a bar graph of the magnitude and phase of a;.

Lag

Figure 3.5 Plots of the magnitude and phase of the Fourier coefficients of
the signal considered in Example 3.4.
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3. Convergence of the Fourier Series — The Dirichlet Conditions

Condition 1. Over any period, x(7) must be absolutely integrable; that is,

J |x(2)| dt < . (3.56)
T

As with square integrability, this guarantees that each coefficient a; will be finite, since

IJ ke 1
ar| = = | |x(t)e” /" dt = —J x(1)|dt.
el = 5 | | jdr = 5 | ko)

So if
I |x(2)| dt < o,
T

then

lai| < .
A periodic signal that violates the first Dirichlet condition is

1

x(t) = 7 0<t=1;

that is, x(¢) is periodic with period 1. This signal is illustrated in Figure 3.8(a).
Condition 2. In any finite interval of time, x(7) is of bounded variation; that is, there
are no more than a finite number of maxima and minima during any single period of the

signal.
An example of a function that meets Condition 1 but not Condition 2 is

x(t) = sin (2777) o<t =1, (3.57)
as illustrated in Figure 3.8(b). For this function, which is periodic with 7 = 1,

1
f |x()| dt < 1.
0
The function has, however, an infinite number of maxima and minima in the interval.

Condition 3. In any finite interval of time, there are only a finite number of discontinu-
ities. Furthermore, each of these discontinuities is finite.

An example of a function that violates Condition 3 is illustrated in Figure 3.8(c). The
signal, of period T = 8, is composed of an infinite number of sections, each of which is
half the height and half the width of the previous section. Thus, the area under one period of
the function is clearly less than 8. However, there are an infinite number of discontinuities
in each period, thereby violating Condition 3.
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Figure 3.8 Signals that violate the
Dirichlet conditions: (a) the signal

Xx(t) =1/tfor0 <t =< 1, a peri-
odic signal with period 1 (this signal
violates the first Dirichlet condition);
(b) the periodic signal of eq. (3.57),
which violates the second Dirichlet
condition; (c) a signal periodic with
period 8 that violates the third Dirichlet
condition [for 0 < t < 8, the value of
Xx(t) decreases by a factor of 2 when-
ever the distance from ¢ to 8
decreases by a factor of 2; that is,
x(t)=1,0=t<4, x(t) =172,

4 <t<6 x(t)=14,6=1t<7,
x(t) =1/8, 7 = t < 7.5, etc.].
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Figure 3.9 Convergence of the Fourier series representation of a square

wave: an illustration of the Gibbs phenomenon. Here, we have depicted the
finite series approximation xy(f) = >.%__, axe*«! for several values of N.
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3 types of Fourier Series — A Summary

A. Periodic Signals:

In Chap. 1 we defined a continuous-time signal x(t) to be periodic if there is a
positive nonzero value of T for which

x(t+T)=x() all ¢ (5.1)

The fundamental period T}, of x(t) is the smallest positive value of T for

which Eq. (5.1) is satisfied, and 1/T, = f is referred to as the fundamental
frequency.
Two basic examples of periodic signals are the real sinusoidal signal

x(f) = cos(aw,t + @)

~

52)

and the complex exponential signal

A—(f) = ()J"'“' (ﬁ-g)

where w, = 2n/T, = 2nf is called the fundamental angular frequency.

B. Complex Exponential Fourier Series Representation:

The complex exponential Fourier series representation of a periodic signal
x(t) with fundamental period T}, is given by

- -

; ket 2r
x0)= Y ¢ Wy == (5.4)
k=—o T(J

where ¢ are known as the complex Fourier coefficients and are given by

1 =
C =— x(t) e *™' gy (5.5)
Mﬂ Ty

where [ denotes the integral over any one period and 0 to T, or —T/2 to
Ty/2 is commonly used for the integration. Setting k = 0 in Eq. (5.5), we have

[ "
o =— | x(t) dt 5
%= fr.-] X(t) (5.6)

which indicates that ¢ equals the average value of x(t) over a period.
When x(t) is real, then from Eq. (5.5) it follows that
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ci=cf 57

where the asterisk indicates the complex conjugate.

C. Trigonometric Fourier Series:

The trigonometric Fourier series representation of a periodic signal x(t) with
fundamental period T}, is given by

ks ,)J
x(t)= (—I_;l 2p z (a; cos kwyt + by sin kwt) Wy = T‘T (5.8)
< k=1 0
where a; and b, are the Fourier coefficients given by
= kayt d 59
=— | x(t)cos kwyt dt
ay T f‘r., (1) cos kwyt ¢ (5.9a)
2 .
b, = — fT: x(t) sin kewyt dt (5.9b)
=

The coefficients a, and b, and the complex Fourier coefficients c, are related
by (Prob. 5.3)

ay

5 -0 ay =c; oy b, = jlep —cy) (5.10)

From Eq. (5.10) we obtain

¢, =—=(a, — jby) c_y ==(a; + jby) (5.11)

[
| -

When x(¢) is real, then g, and b, are real and by Eq. (5.10) we have

a;, =2Re[¢; ] b, =—2Im[c;] (5.12)

Even and Odd Signals:

If a periodic signal x(t) is even, then b, = 0 and its Fourier series (5.8)
contains only cosine terms:

a - 2
x(t)= % + 2 a, cos kw yt Wy =— (5.13)
k=1

0

If x(¢) is odd, then a, = 0 and its Fourier series contains only sine terms:

x(t)= 2 b, sin kawyt w, = (5.14)

k=1 0
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D. Harmonic Form Fourier Series:

Another form of the Fourier series representation of a real periodic signal x(t)
with fundamental period T} is

% ,
; v 2x
x(t)=Cp + E C; cos(kaw ot —6,) Wy = T
0

k=1

(5.15)

Equation (5.15) can be derived from Eq. (5.8) and is known as the harmonic
form Fourier series of x(t). The term C is known as the dc component, and

the term C,, cos(kwgt — 0y) is referred to as the kth harmonic component of
x(t). The first harmonic component C; cos(wgt — 8;) is commonly called the

fundamental component because it has the same fundamental period as x(t).
The coefficients C, and the angles 0, are called the harmonic amplitudes and

phase angles, respectively, and they are related to the Fourier coefficients a;
and b, by

Co :a% Gy :\faf +b,f 6, = tan 15 (5.16)

a,
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3. Glossary — English/Chinese Translation

English Chinese
Fourier series (B
convergence s

harmonics 1EIR

sinusoidal signal IE%ES
fundamental frequency E=551

Euler's rule BRAL AN
magnitude and phase WEREAIAE
Dirichlet conditions IKFITTE AT
exponential Fourier series SIESUIEEMRE
trigonometric Fourier series =R
harmonic form Fourier series IR SRR
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