Tutorial 1-03-f

Question 1

3.17. Find the inverse Laplace transform of the following $X(s)$:
(a) $X(s)=\frac{2 s+4}{s^{2}+4 s+3}, \operatorname{Re}(s)>-1$
(b) $X(s)=\frac{2 s+4}{s^{2}+4 s+3}, \operatorname{Re}(s)<-3$
(c) $X(s)=\frac{2 s+4}{s^{2}+4 s+3},-3<\operatorname{Re}(s)<-1$

Question 2

3.19. Find the inverse Laplace transform of

$$
X(s)=\frac{s^{2}+2 s+5}{(s+3)(s+5)^{2}} \quad \operatorname{Re}(s)>-3
$$

Question 3

3.31. The feedback interconnection of two causal subsystems with system functions $F(s)$ and $G(s)$ is depicted in Fig. 3-13. Find the overall system function $H(s)$ for this feedback system.

Fig. 3-13 Feedback system.

Question 4

3.38. Solve the second-order linear differential equation
$y^{\prime \prime}(t)+5 y^{\prime}(t)+6 y(t)=x(t)$
with the initial conditions $y(0)=2, y^{\prime}(0)=1$, and $x(t)=e^{-t} u(t)$.

SOLUTION

Question 1

Expanding by partial fractions, we have

$$
X(s)=\frac{2 s+4}{s^{2}+4 s+3}=2 \frac{s+2}{(s+1)(s+3)}=\frac{c_{1}}{s+1}+\frac{c_{2}}{s+3}
$$

Using Eq. (3.30), we obtain

$$
\begin{aligned}
& c_{1}=\left.(s+1) X(s)\right|_{s=-1}=\left.2 \frac{s+2}{s+3}\right|_{s=-1}=1 \\
& c_{2}=\left.(s+3) X(s)\right|_{s=-3}=\left.2 \frac{s+2}{s+1}\right|_{s=-3}=1
\end{aligned}
$$

Hence,

$$
X(s)=\frac{1}{s+1}+\frac{1}{s+3}
$$

(a) The ROC of $X(s)$ is $\operatorname{Re}(s)>-1$. Thus, $x(t)$ is a right-sided signal and from Table 3-1 we obtain

$$
x(t)=e^{-t} u(t)+e^{-3 t} u(t)=\left(e^{-t}+e^{-3 t}\right) u(t)
$$

(b) The ROC of $X(s)$ is $\operatorname{Re}(s)<-3$. Thus, $x(t)$ is a left-sided signal and from Table 3-1 we obtain

$$
x(t)=-e^{-t} u(-t)-e^{-3 t} u(-t)=-\left(e^{-t}+e^{-3 t}\right) u(-t)
$$

(c) The ROC of $X(s)$ is $-3<\operatorname{Re}(s)<-1$. Thus, $x(t)$ is a double-sided signal and from Table 3-1 we obtain

$$
x(t)=-e^{-t} u(-t)+e^{-3 t} u(t)
$$

Question 2

$X(s)=\frac{c_{1}}{s+3}+\frac{\lambda_{1}}{s+5}+\frac{\lambda_{2}}{(s+5)^{2}}$
By Eqs. (3.30) and (3.32) we have

$$
\begin{aligned}
c_{1} & =\left.(s+3) X(s)\right|_{s=-3}=\left.\frac{s^{2}+2 s+5}{(s+5)^{2}}\right|_{s=-3}=2 \\
\lambda_{2} & =\left.(s+5)^{2} X(s)\right|_{s=-5}=\left.\frac{s^{2}+2 s+5}{s+3}\right|_{s=-5}=-10 \\
\lambda_{1} & =\left.\frac{d}{d s}\left[(s+5)^{2} X(s)\right]\right|_{s=-5}=\left.\frac{d}{d s}\left[\frac{s^{2}+2 s+5}{s+3}\right]\right|_{s=-5} \\
& =\left.\frac{s^{2}+6 s+1}{(s+3)^{2}}\right|_{s=-5}=-1
\end{aligned}
$$

Hence,

$$
X(s)=\frac{2}{s+3}-\frac{1}{s+5}-\frac{10}{(s+5)^{2}}
$$

The ROC of $X(s)$ is $\operatorname{Re}(s)>-3$. Thus, $x(t)$ is a right-sided signal and from Table 3-1 we obtain

$$
\begin{aligned}
x(t) & =2 e^{-3 t} u(t)-e^{-5 t} u(t)-10 t e^{-5 t} u(t) \\
& =\left[2 e^{-3 t}-e^{-5 t} u(t)-10 t e^{-5 t} u(t)\right.
\end{aligned}
$$

Question 3

Let

$$
x(t) \leftrightarrow X(s) \quad y(t) \leftrightarrow Y(s) \quad r(t) \leftrightarrow R(s) \quad e(t) \leftrightarrow E(s)
$$

Then,

$$
\begin{align*}
Y(s) & =E(s) F(s) \tag{3.87}\\
R(s) & =Y(s) G(s) \tag{3.88}
\end{align*}
$$

Since

$$
e(t)=x(t)+r(t)
$$

we have

$$
\begin{equation*}
E(s)=X(s)+R(s) \tag{3.89}
\end{equation*}
$$

Substituting Eq. (3.88) into Eq. (3.89) and then substituting the result into Eq. (3.87), we obtain

$$
Y(s)=[X(s)+Y(s) G(s)] F(s)
$$

or

$$
[1-F(s) G(s)] Y(s)=F(s) X(s)
$$

Thus, the overall system function is

$$
\begin{equation*}
H(s)=\frac{Y(s)}{X(s)}=\frac{F(s)}{1-F(s) G(s)} \tag{3.90}
\end{equation*}
$$

Question 4

$$
\begin{equation*}
y^{\prime \prime}(t)+5 y^{\prime}(t)+6 y(t)=x(t) \tag{3.105}
\end{equation*}
$$

with the initial conditions $y(0)=2, y^{\prime}(0)=1$, and $x(t)=e^{-t} u(t)$.
Assume that $y(0)=y\left(0^{-}\right)$and $y^{\prime}(0)=y\left(0^{-}\right)$. Let

$$
y(t) \leftrightarrow Y_{I}(s)
$$

Then from Eqs. (3.44) and (3.45)

$$
\begin{gathered}
y^{\prime}(t) \leftrightarrow s Y_{I}(s)-y\left(0^{-}\right)=s Y_{I}(s)-2 \\
y^{\prime}(t) \leftrightarrow s^{2} Y_{I}(s) s y\left(0^{-}\right) y^{\prime}\left(0^{-}\right) s^{2} Y_{I}(s)-2 s-1
\end{gathered}
$$

From Table 3-1 we have

$$
x(t) \leftrightarrow X_{I}(s)=\frac{1}{s+1}
$$

Taking the unilateral Laplace transform of Eq. (3.105), we obtain

$$
\left[s^{2} Y_{I}(s)-2 s-1\right]+5\left[s Y_{I}(s)-2\right]+6 Y_{I}(s)=\frac{1}{s+1}
$$

or

$$
\left(s^{2}+5 s+6\right) Y_{I}(s)=\frac{1}{s+1}+2 s+11=\frac{2 s^{2}+13 s+12}{s+1}
$$

Thus,

$$
Y_{I}(s)=\frac{2 s^{2}+13 s+12}{(s+1)\left(s^{2}+5 s+6\right)}=\frac{2 s^{2}+13 s+12}{(s+1)(s+2)(s+3)}
$$

Using partial-fraction expansions, we obtain

$$
Y_{I}(s)=\frac{1}{2} \frac{1}{s+1}+6 \frac{1}{s+2}-\frac{9}{2} \frac{1}{s+3}
$$

Taking the inverse Laplace transform of $Y_{I}(s)$, we have

$$
y(t)=\left(\frac{1}{2} e^{-t}+6 e^{-2 t}-\frac{9}{2} e^{-3 t}\right) u(t)
$$

Notice that $y\left(0^{+}\right)=2=y(0)$ and $y^{\prime}\left(0^{+}\right)=1=y^{\prime}(0)$; and we can write $y(t)$ as

$$
y(t)=\frac{1}{2} e^{-t}+6 e^{-2 t}-\frac{9}{2} e^{-3 t} \quad t \geq 0
$$

