Tutorial

Question 1

3.1. Find the Laplace transform of
(a) $x(t)=-e^{-a t} u(-t)$
(b) $x(t)=e^{a t} u(-t)$

Question 2

3.3. Let

$$
x(t)= \begin{cases}e^{-a t} & 0 \leq t \leq T \\ 0 & \text { otherwise }\end{cases}
$$

Find the Laplace transform of $x(t)$

Question 3

3.5. Find the Laplace transform $X(s)$ and sketch the pole-zero plot with the ROC for the following signals $x(t)$:
(a) $x(t)=e^{-2 t} u(t)+e^{-3 t} u(t)$
(b) $x(t)=e^{-3 t} u(t)+e^{2 t} u(-t)$
(C) $x(t)=e^{2 t} u(t)+e^{-3 t} u(-t)$

SOLUTION

Question 1

(a) From Eq. (3.3)

$$
\begin{aligned}
X(s) & =-\int_{-\infty}^{\infty} e^{-a t} u(-t) e^{-s t} d t=-\int_{-\infty}^{0^{-}} e^{-(s+a) t} d t \\
& =\left.\frac{1}{s+a} e^{-(s+a) t}\right|_{-\infty} ^{0-}=\frac{1}{s+a} \quad \operatorname{Re}(s)<-a
\end{aligned}
$$

(b) Thus, we obtain

$$
\begin{equation*}
-e^{-a t} u(-t) \leftrightarrow \frac{1}{s+a} \quad \operatorname{Re}(s)<-a \tag{3.54}
\end{equation*}
$$

(b) Similarly,

$$
\begin{aligned}
X(s) & =\int_{-\infty}^{\infty} e^{a t} u(-t) e^{-s t} d t=\int_{-\infty}^{0^{-}} e^{-(s-a) t} d t \\
& =-\left.\frac{1}{s-a} e^{-(s-a) t}\right|_{-\infty} ^{0-}=-\frac{1}{s-a} \quad \operatorname{Re}(s)<a
\end{aligned}
$$

Thus, we obtain

$$
\begin{equation*}
e^{a t} u(-t) \leftrightarrow-\frac{1}{s-a} \quad \operatorname{Re}(s)<a \tag{3.55}
\end{equation*}
$$

Question 2

By Eq. (3.3)

$$
\begin{align*}
X(s) & =\int_{0}^{T} e^{-a t} e^{-s t} d t=\int_{0}^{T} e^{-(s+a) t} d t \\
& =-\left.\frac{1}{s+a} e^{-(s+a) t}\right|_{0} ^{T}=\frac{1}{s+a}\left[1-e^{-(s+a) T}\right] \tag{3.58}
\end{align*}
$$

Since $x(t)$ is a finite-duration signal, the ROC of $X(s)$ is the entire $s-$ plane. Note that from Eq. (3.58) it appears that $X(s)$ does not converge at $s=-a$. But this is not the case. Setting $s=-a$ in the integral in Eq. (3.58), we have

$$
X(-a)=\int_{0}^{T} e^{-(a+a) t} d t=\int_{0}^{T} d t=T
$$

Question 3

(a) From Table 3-1

$$
\begin{array}{ll}
e^{-2 t} u(t) \leftrightarrow \frac{1}{s+2} & \operatorname{Re}(s)>-2 \\
e^{-3 t} u(t) \leftrightarrow \frac{1}{s+3} & \operatorname{Re}(s)>-3 \tag{3.60}
\end{array}
$$

We see that the ROCs in Eqs. (3.59) and (3.60) overlap, and thus,

$$
\begin{equation*}
X(s)=\frac{1}{s+2}+\frac{1}{s+3}=\frac{2\left(s+\frac{5}{2}\right)}{(s+2)(s+3)} \quad \operatorname{Re}(s)>-2 \tag{3.61}
\end{equation*}
$$

From Eq. (3.61) we see that $X(s)$ has one zero at $s=-\frac{5}{2}$ and two poles at $s=-2$ and $s=-3$ and that the ROC is $\operatorname{Re}(s)>-2$, as sketched in Fig. 3-11(a).
(b) From Table 3-1

$$
\left.\begin{array}{rl}
e^{-3 t} u(t) & \leftrightarrow \frac{1}{s+3}
\end{array} r \operatorname{Re}(s)>-3\right\}
$$

We see that the ROCs in Eqs. (3.62) and (3.63) overlap, and thus,

$$
\begin{equation*}
X(s)=\frac{1}{s+3}-\frac{1}{s-2}=\frac{-5}{(s-2)(s+3)} \quad-3<\operatorname{Re}(s)<2 \tag{3.64}
\end{equation*}
$$

From Eq. (3.64) we see that $X(s)$ has no zeros and two poles at $s=2$ and $s=-3$ and that the ROC is $-3<\operatorname{Re}(s)<2$, as sketched in Fig. 311(b).
(c) From Table 3-1
$e^{2 t} u(t) \leftrightarrow \frac{1}{s-2} \quad \operatorname{Re}(s)>2$
$e^{-3 t} u(-t) \leftrightarrow-\frac{1}{s+3} \quad \operatorname{Re}(s)<-3$
We see that the ROCs in Eqs. (3.65) and (3.66) do not overlap and that there is no common ROC; thus, $x(t)$ has no transform $X(s)$.

(a)

(b)

Fig. 3-11

