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1. The Laplace transform

In this chapter, the Laplace transform is introduced to represent
continuous-time signals in the s-domain (s is a complex variable), and
the concept of the system function for a continuous-time LTI system
is described.

The Laplace Transform

For a general continuous-time signal x(t), the Laplace transform X(s)
1s defined as

X(s)= [~ x()e "'di (3.3)

where:
s=0+ jw (3.4)

The Laplace transform defined in Eq. (3.3) is often called the bilateral
(or two-sided) Laplace transform in contrast to the unilateral (or one-
sided) Laplace transform, which is defined as:

X, (s)= f”/ x(t)e *'dt (3.5)

Equation (3.3) is sometimes considered an operator that transforms a
signal x(t) into a function X(s) symbolically represented by

X(s)= % {x(1)} (3.6)

and the signal x(t) and its Laplace transform X(s) are said to form a
Laplace transform pair denoted as:

x(t) <> X(s) 3.7)

Region of Convergence (ROC)

Consider the signal:

x(1) = e “u(t) a real (3.8)
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The Laplace Transform of x(z) is:

Example 1

20 = —_ 0 e
X(s):f_xe at u(t)e “'dt=f0+e (.x+u),dt

1 e—(.\~+a)l

s+ a

Re(s) > —a 3.9

ot sta

because lim; -~ e ©* 9" = () only if Re(s + a) > 0 or Re(s) > —a.

Thus, the ROC for this example is: as Re(s) > —a and is displayed in
the complex plane as shown in Fig. 3-1 by the shaded area to the right
of the line Re(s) = —a. In Laplace transform applications, the complex
plane is commonly referred to as the s-plane. The horizontal and
vertical axes are sometimes referred to as the o-axis and the jw-axis,
respectively.

.
7
-

(@) (b)

Fig. 3-1 ROC for Example 3.1

Example 2

x(®) = —e "u(—1) a real (3.10)
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Laplace transform:

X(s)= Re(s) < —a (3.11)

s+ a

Re(s) <—ais displayed in the complex plane as shown in Fig. 3-2 by
the shaded area to the left of the line Re(s) = —a.

7//

A 4

7

we see that the algebraic expressions for X(s) for these two different
signals are identical except for the ROCs. Therefore, in order for the
Laplace transform to be unique for each signal x(t), the ROC must be
specified as part of the transform.

Poles and Zeros

n m—1 -
:a(,s' +ays Tty @ (5% 5)

X(s) n n—I1
bys" +bs" " +--+b, by (s—p)(s—p,)

(3.12)

The coefficients axand by are real constants, and m and n are positive
integers. The X(s) is called a proper rational function if » > m, and an
improper rational function if » < m. The roots of the numerator
polynomial,py, are called the zeros of X(s) because X(s) = 0 for those
values of's.
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Similarly, the roots of the denominator polynomial, px, are called the
poles of X(s) because X(s) is infinite for those values of s. Therefore,
the poles of X(s) lie outside the ROC since X(s) does not converge at
the poles, by definition.

The zeros, on the other hand, may lie inside or outside the ROC.
Except for a scale factor aobo, X(s) can be completely specified by its
zeros and poles. Thus, a very compact representation of X(s) in the s-
plane is to show the locations of poles and zeros in addition to the
ROC. Traditionally, an “x” is used to indicate each pole location and

(1P

an “0” 1s used to indicate each zero.

Example 3

28+ e
X(s)=—; e =2 Jali Re(s)>—1
s +4s+3 (s+D(s+3)

Note that X(s) has one zero at s = —2 and two poles at s =—1 and s =
—3 with scale factor 2.

jo
A

V///////
%

?z

Property 1: The ROC does not contain any poles.

A\

<<-\—\“ A3 —\‘

>
>

3
&

T

Properties of ROC

Property 2: If x(2) is a finite-duration signal, that is, x(¢)=0 except in a

finite interval ¢, <t < t; (- co< t; and t, <o) then the ROC is the

entire s-plane except possibly s =0 ors = oo,
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Property 3: If x(t) 1s a right-sided signal, that is, x(?)=0 for < ;< co,

then the ROC is of the form Re(s) < omin  Where omin €quals the
minimum real part of any of the poles of X(s). Thus, the ROC is a half-
plane to the left of the vertical line Re(s) = omin in the s-plane and thus
to the left of all of the poles of X(s).

Property 4: If x(t) is a left-sided signal, that is, x(z)=0 for t >t2> - oo

then the ROC is of the form Re(s) < omin Where omin equals the
minimum real part of any of the poles of X(s). Thus, the ROC is a half-
plane to the left of the vertical line Re(s) = omin in the s-plane and thus
to the left of all of the poles of X(s).

Property 5: If x(#) is a two-sided signal, that is, x(¢) is an infinite
duration signal that is neither right-sided nor left-sided, then the ROC
is of the form o; < Re(s) < o2 where g; and o; are the real parts of the
two poles of X(s). Thus, the ROC is a vertical strip in the s-plane
between the vertical lines Re(s) = ol and Re(s) = o2.

2. Laplace Transform of Some Common Signals

Unit Impulse Function

]’[bm]=fiamv‘”dr =1 alls (3.13)

Unit Step Function
L u)] = f:u(l)e'"”dt =f:, e Vdt

o0

=1 Rew>0 (3.14)
0" S
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Laplace Transform for Some Common Signals

x(1) X(s) ROC
(1) 1 All s
u(r) % Re(s) > 0
—u(—1) % Re(s) <0
tu(t) sl:, Re(s) > 0
k!
t* u(r) ey Re(s) > 0
|
e “"u(r) g Re(s) > —Rel(a)
1
—e U y(—1) o Re(s) < —Re(a)
|
te " u(t) G+ap Re(s) > —Re(a)
1
_te—(llu(_’) (s + a)2 Re(S) < _RC((I)
S
Cos Wy fu(r) LI Re(s) = 0
0
'. m(,
sin @, fu(r) I Re(s) > 0
: 0
s+ a

e “cos mytu(r)

e 'sin wytu(r)

(s + a)’ + o}

®,

(s + a) + w}

Re(s) > —Rel(a)

Re(s) > —Re(a)
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3. Properties of Laplace Transform

Linearity

x, () < X,(s) ROC = R,
X,(1) <> X,(s) ROC = R,
ax () + ax,(1) <> a X (s) + a,X,(s) R' DR NR, (3.15)

The set notation A © B means that set A contains set B, while A n B denotes
the intersection of sets A and B, that is, the set containing all elements in both
A and B. Thus, Eq. (3.15) indicates that the ROC of the resultant Laplace
transform is at least as large as the region in common between R; and R,.

Usually we have simply R' = R; n R,. This is illustrated in Fig. 3-4.
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Time Shifting

x(f) <= X(s) ROC =R
then x(t—ty)<=e 0X(s) R'=R (3.16)

Equation (3.16) indicates that the ROCs before and after the time-shift
operation are the same.
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Shifting in the S Domian
x(f)<X(s) ROC =R
then e x(t) = X(s —5,) R'=R+Rels,) (3.17)
Equation (3.17) indicates that the ROC associated with X(s—sy) is
that of X(s) shifted by Re(sy). This is illustrated in Fig. 3-5.

=
g
s

B+Re(sy)

W 5

>

o

7
% .//// ) P 5 a+Re(s,)

N \ﬁ\i Ny,

»

Fig. 3-5 Effect on the ROC of shifting in the s-domain. (a) ROC of X(s); (b) ROC of X(s — sq).

5
z

Time Scaling

x(1) <= X(5) ROC =R

le(i) R =aR (3.18)
{ a

|a

then xiat)y=

Equation (3.18) indicates that scaling the time variable t by the factor
a causes an inverse scaling of the variable s by 1/a as well as an
amplitude scaling of X(s/a) by 1/|al. The corresponding effect on the
ROC is illustrated in Fig. 3-6.

jo J

€
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i B o ao.
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Fig. 3-6 Effect on the ROC of time scaling. (a) ROC of X(s); (b) ROC of X(s/a).
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Time Reversal

x(f) = X(y) ROC =R
then x(—1) == X(—5) R =—R (3.19)

Thus, time reversal of x(?) produces a reversal of both the o- and jw-
axes in the s-plane. Eqn (3.19) is readily obtained by setting a = —1
in Eq. (3.18).

Differentiation in the Time Domain

x() = X(s) ROC =R

dx(t)

then > sX(5) ROR (3.200

dt

Equation (3.20) shows that the effect of differentiation in the time
domain is multiplication of the corresponding Laplace transform by s.
The associated ROC is unchanged unless there is a pole-zero
cancellation at s = 0.

Differentiation in the S Domain

x(1) <> X(5) ROC =R

dX(s)

then —Ix(t) =
ds

Integration in the Time Domain

x(r) < X(s) ROC =R

then f’ .tl_r)drwl)((.\a R'=RN{Re(s)=>0} (3.22)
= z

Equation (3.22) shows that the Laplace transform operation
corresponding to time-domain integration is multiplication by 1/s, and
this is expected since integration is the inverse operation of
differentiation. The form of R” follows from the possible introduction
of an additional pole at s = 0 by the multiplication by 1
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Convolution
x () = Xl(.s) ROC = Rl
x(1) = X,(5) ROC =R,
then ) +x(H=X(HX(s) R DR NR, (3.23)
Table of Properties of Laplace transform
PROPERTY SIGNAL TRANSFORM ROC
x(1) X(s) R
x,(0) X,(s) R,
X,(1) X5(s) R,
Linearity ax,(t) + a,x,(t) a, X,(s) + a, X,(s) R'"DR NR,
Time shifting x(t—t,) e S X(s) R'=R
Shifting in s %' x(1) X(s—s;) R'=R+Re(s,)
1
Time scaling x(at) HX(a) R'=aR
a
Time reversal x(—1) X(—s) R'=—R
S 5 dx(t)
Differentiation in ¢ T sX(s) R'DR
1X (.
Differentiation in s —1x(1) (T(?) R'=R
ds
‘ 1
Integration f_xx(r)dr ;X(s) R'DRN{Re(s) > 0)
Convolution X, (1) # x,5(1) X, (s) X5(5) R'DR,NR,
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3. Glossary — English/Chinese Translation

English Chinese
laplace transform RS AVE
s domain S i
complex variable STE
continuous time LTI system JELEATIA) LTI 2%
unilateral and bilateral BRINFINGA
region of convergence ISR X 12k
s-plane S-S
complex plane S¥E
poles and zeros REFIE R
numerator and denominator DFHE
set notation REFS,

----- END -----
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