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1. Properties of LTI Systems

Repeat the previous notes on convolution

400

y[nl = > x[klh[n — k] = x[n] * h[n]

k:—oc

y(t) = l'+°° x(T)h(t — 7)dT = x(t) * h(¢)

— 00

(2.39)

(2.40)

The characteristics of an LTI system are completely determined by its
impulse response. It is important to emphasize that this property holds

only for LTI systems.

The Commutative Property

For discrete time and continuous time systems:

x[n] * h[n] = h[n]* x[n] = > h[klx[n — k],

k:—oo

and

4

x(t) * h(t) = h(t) * x(¢t) = f h(T)x(t — 7)dr.

The Distributive Property

For discrete time and continuous time systems:

x[n] * (hy[n] + hy[n]) = x[n] * hi[n] + x[n] * hy[n],

and

x(2) * [ () + ha ()] = x(2) * i (2) + x(2) * ha(2).

It can be represented in block diagram as:
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y1(t)

Y

hy(t) |

Rit) =iy y(t)

o |

ya(t)

Y

(@

X(t) e (1) + (1) f—am y(1) Figure 2.23 Interpretation of the
distributive property of convolution

for a parallel interconnection of LTI
(b) systems.

The two systems, with impulse responses A (#) and h;(#), have identical inputs, and
their outputs are added. Since

yi(®) = x(@) * hi()
and

y2(t) = x(2) * ha(2),
the system of Figure 2.23(a) has output

y(®) = x(2) * hi (1) + x(2) * hp(2), (2.48)
corresponding to the right-hand side of eq. (2.47). The system of Figure 2.23(b) has output
y(@©) = x(@) * [l @) + b (®)], (2.49)
Also, as a consequence of both the commutative and distributive properties, we have
[x1[n] + x2[n]] * h[n] = x1[n] * h[n] + x2[n] * h[n] (2.50)
and
[x1()) + x2(0)] * h(?) = x1(2) * h(2) + x2(2) * h(?), (2.51)
Example
Let y[n] denote the convolution of the following two sequences:
x[n] = (%) u[n] + 2"u[—n], (2.52)
h[n] = u[n]. (2.53)

Find y[n].
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Solution
if we let x;[n] = (1/2)"u[n] and x,[n] = 2"u[—n], it follows that
ylnl = (x1[n] + x2[n]) * h[n]. (2.54)

Using the distributive property of convolution, we may rewrite eq. (2.54) as

yln] = yin] + y2[n], (2.55)
where

yiln] = xi[n] * hln] (2.56)
and

y2[n] = x2[n] * h[n]. (2.57)

After that, it is much easier to evaluate y;/n/ and y2/n]

Answer
yln]

]

Figure 2.24 The signal y[n] = x[n] * h[n] for Example 2.10.

N @ 10 | =

W=

0128 458 7 n

The Associative Property

discrete time

x[n] * (hi[n] * hao[n]) = (x[n] * hy[n]) * hy[n], (2.58)

and in continuous time

x(2) * [hi (@) * ho(D)] = [x(2) * by (1)] * ha(2). (2.59)
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Hence it does not matter in what order we convolve these signals.

and

yln] = x[n]* hi[n] * hy[n] (2.60)

y(@) = x(2) * hy(2) * hy(1) (2.61)

An interpretation of the associative property is illustrated for discrete-time systems
in Figures 2.25(a) and (b). In Figure 2.25(a),

y[n] = wln] * hy[n]
= (x[n] * hy[n]) * hy[n].
In Figure 2.25(b),
yln] = x[n] * h[n]
= x[n] * (hy[n] * hy[n]).
win]
x[n] > hyn] > h,[n] = y[n]
(@)
X[N] == W[N] = h4[N] ¥ 5[N]  fy y[N]

(b)

X[N] s

hn] = hy[n] «hy [n]

—> yn]

©

x[n] P

Y

ha[n] hs[n]

> y[n] Figure 2.25 Associative property of
convolution and the implication of this

(d)

and the commutative property for the
series interconnection of LTI systems.
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LTI System with and without memory

For a discrete-time LTI system is if 4/n/ = 0 for n# 0. In this case the
impulse response has the form:

h[n] = Ko[n], (2.62)

where K = /0] is a constant, and the convolution sum reduces to the

relation
y[n] = Kx[n]. (2.63)

In particular, a continuous-time LTI system is memoryless if
h(t) = 0 for ¢t # 0, and such a memoryless LTI system has the form

y(1) = Kx(1) (2.64)

for some constant K and has the impulse response
h(t) = Ko(z). (2.65)

If K=1, the convolution sum and integral formulae.....

x[n] = x[n] * é[n]
and

x(t) = x(2) * 8(2),

Will reduce to the shifting properties of the discrete time and
continuous time unit impulses:
+00

x[n] = > x[k18[n — k]

k:—CD

x(1) = J v x(1)o(t — 7)dT.

—00

Therefore, if A(ty) 70 for to #0, then continuous-time LTI system has

memory.
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Invertibility of LTI Systems

Consider a continuous-time LTI system with impulse response h(t).
This system is invertible only if an inverse system exists that, when

connected in series with the original system, produces an output equal
to the input to the first system. Furthermore, if an LTI system is

invertible, then it has an LTI inverse.

xt) =] ) —2s] > wit)=x(1)
(@)

x(t) > Identity system > x(t)
3(t)

(b)

Figure 2.26 Concept of an inverse
system for continuous-time LTI sys-
tems. The system with impulse re-
sponse (1) is the inverse of the
system with impulse response h(f) if
h(t) * hy(f) = 8(t).

h(t) * hy(t) = 8(). (2.66)

Similarly, in discrete time, the impulse response 4;[n] of the inverse system for an LTI

system with impulse response h[n] must satisfy

h[n] * hy[n] = 8[n]. : (2.67)

Continuous time

3(t) LTI hit)

. system :

x(t) yit) = x(f) = ht)
Discrete Time

3[n] LTI hin)

system
x[n] y[n] = x{n] = hn]
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Causality for LTI Systems

The output of a causal system depends only on the present and past
values of the input to the system. Specifically, in order for a discrete-
time LTI system to be causal, y[n] must not depend on x[k] for k > n.

From eq. (2.39), we see that for this to be true, all of the coefficients
h[n- k] that multiply values of x[k] for k > n must be zero.

A causal discrete-time LTI system satisfy the condition:

hln] =0 forn<O. (2.77)

For a causal discrete-time LTI system, the condition in eq. (2.77) implies that the
convolution sum representation in eq. (2.39) becomes

n

ylnl = > x[klh[n — k], (2.78)

k=—o

and the alternative equivalent form, eq. (2.43), becomes
ylnl = > hik)x[n — k). (2.79)
k=0

Similarly, a continuous-time LTI system is causal if
h(t) =0 fort <O, (2.80)

and in this case the convolution integral is given by

y@) = Jr x(Dh(t — dT = j . h(T)x(t — 7)dr. (2.81)
— 0

Stability for LTI Systems

A system is stable if every bounded input produces a bounded output.
Consider an input x/n/ that is bounded in magnitude:

|x[n]] < B for all n. (2.82)
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ly[n]| = B Z |n[k]|  for all n. (2.85)

k=—c

Fromeq. (2.85), we can conclude that if the impulse response is absolutely summable,
that is, if

+00

> |nlk]| < =, (2.86)
k=—o

then y[n] is bounded in magnitude, and hence, the system is stable.

Similarly, in continuous time:

J . h(T)x(t — 7)dt

ly(@)| =

< j Ih(m)l|x(¢ = 7ldr

+oo
= Bj |h(T)|d .

Therefore, the system is stable if the impulse response is absolutely integrable, i.e., if

400
J |h(r)|dT < . (2.87)

=~00

2. Eigenfunctions and Eigenvalues

Question: What are Eigenvalues and Eigenfunctions?
Answer:  Watch video 11 in Video Gallery web page.

For Continuous Time LTI Systems

LTI systems represented by T are the complex exponentials e, with s a
complex variable. That is,

T{e"} = he" (2.22)

where A is the eigenvalue of T associated with ‘e“. Setting x(t) = %' in Eq.
(2.10), we have

v()=T{e"} =f: ht)ye' ™ dr= [f: h(r)e " dr|e"”
= H(s)e" = Ae” (2.23)
where
A=H(s) =fic hit)e *" dt (2.24)
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Thus Eigenvalue: A given by H(s)
Eigenfunction: e’

The above results underlie the definitions of the Laplace
transform and Fourier transform, which will be discussed later.

For Discrete Time LTI Systems

The eigenfunctions of discrete-time LTI systems represented by

T are the complex exponentials z”, with z a complex variable.
That 1s,

T{z"} = A" (2.50)

where A is the eigenvalue of T associated with z". Setting x[n] = z" in Eq.
(2.39), we have

yln]1=T{z"} = E hlk1z" % = 2 hlk]z” ]

hk=—u k=—m
=H@) 7" =AL (2.51)
where
A=H@)= Y hklz™* (2.52)
k=—c
Thus Eigenvalue: A given by H(z)
Eigenfunction: z"

The above results underlie the definitions of the Z transform and
Discrete Fourier transform, which will be discussed later.

- END -
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3. Glossary — English/Chinese Translation

English Chinese
Linear Time Invariant Systems | &MBEAZERS
Eigenfunction and Eigenvalue | FHEREFMHEE
Commutative Property SR
Distributive Property HEE
Associative Property KEXEIME

Unit Impulse v 9
Invertibility BIpe

Inverse System LR

Causal and Non-Causal System | ERFHEERRS
Discrete Fourier Transform HEEEN S
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