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1. Introduction

. One of the primary reasons LTI systems are important to analysis is
the superposition property

. If we can represent the input to an LTI system in terms of a linear
combination of a set of basic signals, we can then use superposition
to compute the output of the system in terms of its responses to
these basic signals.

. The unit impulse, both in discrete time and in continuous time, 1S
that very general signals can be represented as linear combinations
of delayed impulses.

. Together with the properties of superposition and time invariance,
will allow us to develop a complete characterization of any LTI
system in terms of its response to a unit impulse.

. Such a representation, referred to as the convolution sum in the
discrete-time case, and the convolution integral in continuous time.

2. Discrete Time LTI Systems — The Convolution Sum

In Fig 2.1a, we have five time-shifted, scaled unit impulse sequences,
where the scaling on each impulse equals the value of x/n/ at the
particular instant the unit sample occurs. For example,

¥[=1], n==l

0, n#-1"’

X[018[n] = [ g[(’]’ Z;(())’

x[—1]18[n + 1] = [

A8t~ 1] = {(’)‘,[”’ e 11

Therefore, the sum of the five-sequences in the figure equals x/ n/ for
- 2 :s n :s 2. More generally, by including additional shifted, scaled
impulses, we can write

x[n] = ...+ x[=3]6[n + 3] + x[—2]6[n + 2] + x[—1]6[n + 1] + x[0]6[~n]

2.1
+ x[1]6[n — 1] + x[2]8[n <-2] + x[3]6[n — 3] + ...- e

+o0

x[n] = > x[k18[n — ). 2.2)
Or in a compact form: ke=—co
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x[—1]3[n + 1]

=
eee —4-3-2 | 01 2 3 4 <o n

(©

x[0] 8[n]

-4-3-2-1 01 2 3 4 n
(d)
x[1] 3[n—1]
-4-3-2-1 01 2 3 4 n
' ()
x[2] 8[n—2]
® 00 2 LN
—o—o
-4-3-2-1 0 1 3 4 n
Figure 2.1 Decomposition of a
discrete-time signal into a weighted
®) sum of shifted impulses.
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uln] = > 8[n - Kl,
k=0

For k> 0, eq. (2.2) becomes:

Equation (2.2) is called the sifting property of the discrete-time unit impulse. For
input x/n/ to a linear system expressed in the form of eq. (2.2), the output y/n/ can be

expressed as:

+o0

ylnl = > x[klhln). (2.3)

k=—

That is, h[n] is the output of the LTI system when §[#] is the input. Then for an LTI system,
eq. (2.3) becomes

+o

ylnl = > x[klh[n — k). (2.6)

k= —o

This result is referred to as the convolution sum or superposition sum, and the oper-
ation on the right-hand side of eq. (2.6) is known as the convolution of the sequences x[n]
and h[n]. We will represent the operation of convolution symbolically as

y[n] = x[n] * h[n]. 2.7

Let us look at some examples.... (next page)

Page 4



1-03-c <Linear Time Invariant Systems 1>

Example 2.1:

Consider an LTI system with impulse response A[n] and input x[n], as illustrated in
Figure 2.3(a). For this case, sihce only x[0] and x[1] are nonzero, eq. (2.6) simplifies to
the expression

y[n] = x[0]h[n — O] + x[1]Ah[n — 1] = O,Sh[n] + 2h[n — 1]. (2.8)
h[n]
1
o 1 2 n
2
x[n]
0.5 l
. e e
0 1 n
@)
0.5 0.5h[n]
P &5 &5 S
o 1 2 n

2 ] 2h[n—1]
— o o e ®
2

(b)

2 y[n]

IO

¢,
—o
®

Figure 2.3 (a) The impulse response h[n] of an LTI system and an input
x[n] to the system; (b) the responses or “echoes,” 0.5h[n] and 2h[n — 1], to
the nonzero values of the input, namely, x[0] = 0.5 and x[1] = 2; (c) the
overall response y[n], which is the sum of the echos in (b).
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Example 2.2

Consider Fig. 2.4a. Find out the values of y/n/ for 0,1,2,3,4

o0

y[0] = > x[klh[0 — k] = 0.5. (2.9)

=—0

The product of the sequence x[k] with the sequence A[1 — k] has two nonzero samples,
which may be summed to obtain

)

Y11 = > x[klh[l - k] = 0.5 +2.0 = 2.5. (2.10)
)
Similarly,
y[2] = i x[KIA[2 — k] = 0.5+ 2.0 = 2.5, (2.11)
P
and
y[3] = Z x[k]h[3 — k] = 2.0. (2.12)
=

Therefore, the output y[n] is.......
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2

] x[K]
0.5
*—o ? *—o——

0o 1 k
(@)
1 hin-k], n<0
n—IZ nL I 8 SR k
1
I I IH ) h[0—K]
~2 =1 D k
1 s
I I L
-1 0 1 k
1 =
o rrr, e
0 1 2 k
1
LT
hin—k], n>3
AR &
0 n—=2n-t n k

(b)

Figure 2.4 Interpretation of eq. (2.6) for the signals A[n] and x[n] in Fig-
ure 2.3; (a) the signal x[k] and (b) the signal h[n — k] (as a function of k
with n fixed) for several values of n (n < 0; n = 0, 1, 2, 3; n > 3). Each

of these signals is obtained by reflection and shifting of the unit impuise re-
sponse h[k]. The response y[n] for each value of n is obtained by multiplying
the signals x[k] and h[n — k] in (a) and (b) and then summing the products
over all values of k. The calculation for this example is carried out in detail in
Example 2.2.
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Example 2.3
Consider an input x[n] and a unit impulse response h[n] given by:

x/n] =d" ufn],
hin] = ufn], with 0 < a< 1.

.
x[klhln — k] = {g ' gﬂir‘f‘vii n

x[n] = «"u[n]

h[n] = u[n]

0 ®) n

Figure 2.5 The signals x[n] and h[n] in Example 2.3.

x[K] = «*u[k]
—0 0000000000
0 k
(a)
] [ La
9000000000000 00000 K
(b),
’ ‘ h[—=1-K]
_10-============-=:=- K
(c)
h[1—K]
01 k
(@
’ hin—kK]
0 © n k
: hin—k]
n<0
n%%%%: 900 0000000000000 00 K

Figure 2.6 Graphical interpretation of the calculation of the convolution
sum for Example 2.3.
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1_an+1
yin] =< v )u{nl

Figure 2.7 Output for Example 2.3.

Thus, for n = 0,

i = > o,

k=0

and using the result of Problem 1.54 we can write this as

n — pynt]
y[n] = Za" = ll__a_ forn = 0. (2.13)
k=0 -

Thus, for all n,

The signal y[n] is sketched in Figure 2.7.

Example 2.4

As a further example, consider the two sequences

alii] & 1, 0=n=<4
0, otherwise

and

_Ja", 0=n=6
hin] = [ 0, otherwise -

These signals are depicted in Figure 2.8 for a positive value of &« > 1. Inorder to calculate
the convolution of the two signals, it is convenient to consider five separate intervals for
n. This is illustrated in Figure 2.9.

Interval 1. For n < 0, there is no overlap between the nonzero portions of x[k] and
h[n — k], and consequently, y[n] = 0.

Interval 2. For0 = n =< 4,
n—k

*[kIhin — k] = [g e

Page 9



1-03-c <Linear Time Invariant Systems 1>

x[n]

012345 n
@

012345867 n
()

Figure 2.8 The signals to be convolved in Example 2.4.

Thus, in this interval,
yinl = > a™ (2.14)
k=0

We can evaluate this sum using the finite sum formula, eq. (2.13). Specifically, changing
the variable of summation in eq. (2.14) from k to » = n — k, we obtain

1 _an+l

Y[n]=r§=;a'= =%

Interval 3. Forn>4butn—6 =0(ie.,4<n =< 6),

n—k
x[KJhln — k] = [g ' g;rfv; 4,

Thus, in this interval,
4
yinl = > amk (2.15)
k=0

Once again, we can use the geometric sum formula in eq. (2.13) to evaluate eq. (2.15).
Specifically, factoring out the constant factor of a” from the summation in eq. (2.15)
yields

”1 e (a—l)5 anv4 o an+l
o

= S 2.16)

4
yinl = a" > (@™t =

k=0

Interval4. Forn>6butn—6 < 4 (ie., for6 <n = 10),

a" % (n-6)=k=4
0, otherwise :

x[klh[n — k] = {

so that

4

yinl= > vt

k=n-6
We can again use eq. (2.13) to evaluate this summation. Letting r = k—n+ 6, we obtain
7

10-n 10-n n—11 n—4
l—-a art =
o G=F = »0 =IS# = =6 o=
yln] éoa a réo(a ) «a o e

Interval 5. For n — 6 > 4, or equivalently, n > 10, there is no overlap between the
nonzero portions of x[k] and A[n — k], and hence,

y[n] = 0.
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Summarizing, then, we obtain

0, n<0
. 1
L an+, O0=n=4
| s
n—-4 __ ,n+l
W= St fwEE
l—«
n-4 _ .7
% a, 6<n=10
l—«
L 0, 10<n
which is pictured in Figure 2.10.
™
? y[n]
®
? ™
®
™
®
—o—o—o—o—o—o—c"l o—o
0 4 6 10 n

Figure 2.10 Result of performinag the convolution in Example 2.4,

3. Continuous Time LTI Systems: The Convolution Integral

In analogy with the results derived and discussed in the
preceding section, the goal of this section is to obtain a complete
characterization of a continuous-time LTI system in terms of its
unit impulse response.

Representation of analogue signals by staircase waveform

We begin by considering a pulse or "staircase" approximation,
x(t), to a continuous-time signal x(t), as illustrated in Figure
2.12(a). In Figure 2.12 (a) —(e):

1
oa(t) ={ & ki A, (2.24)
0, otherwise
then, since Ada(#) has unit amplitude, we have the expression
2t) = > x(kA)SA(t — kKA)A. (2.25)

k=—
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X(—2A)3,(t + 24)A

]

x(—24)

—2A -A t
(b)

X(—A)S,t + A)A

x(—A)
-AO t
() '
x(0)3,5(H)A
x(0)
0 A T

(d)
X(A)5,(t—A)A

x(A)

A 2A t 5 :
Figure 2.12 Staircase approxima-

(e) tion to a continuous-time signal.

As we let A approach 0, the approximation £(f) becomes better and better, and in the
limit equals x(#). Therefore,

x(r) = lim > x(kB)5a(r — KA)A. (2.26)

k=—w
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+oo

x(t) = j x(7)6(t — 1)dT. 2.27)

—00

As in discrete time, we refer to eq. (2.27) as the sifting property of the continuous-time
impulse. We note that, for the specific example of x(f) = u(z), eq. (2.27) becomes

u(t) = JW u(t)o(t — rydt = Lwé(t — 1)dT, (2.28)

—00

since u(t) = 0 for =<0 and u(t) = 1 for t> 0.

x(7)
\ \_/—

(@

3(t—1)

t T
(b)
x(1)8(t—1) = x(t)d(t—7) -
Figure 2.14 (a) Arbitrary signal
x(7); (b) impulse &(f— ) as a function
t +  of 7 with £ fixed; (c) product of these
© two signals.
+x
yi) = f x(T)h-(t)dT. (2.31)

The interpretation of eq. (2.31) is analogous to the one for eq. (2.29). As we showed
in Section 2.2.1, any input x(¢) can be represented as

—

x(t) = J i x(7)o6(t — 1)dT.
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x(m)h.(t)

Shaded area = x(kA)hy(t)A

St

Figure 2.16 Graphical illustration
ka  (k+1)A : of egs. (2.30) and (2.31).

and define the unit impulse response h(t) as
h(t) = ho(D); (2.32)

i.e., h(?) is the response to 8(¢). In this case, eq. (2.31) becomes

$(t) = j " S =il (233)

—00

The convolution of 2 signals is:

y(®) = x(2) * h(t). . (234

Example 2.6

Let x(t) be the input to an LTI system with unit impulse response
h(t), where:

x() = e “u(t), a>0 and h(t) = u(t).

Solution: For t > 0,

g~ Qpt
0, otherwise ~

x(Th(t — 1) = {
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h(r)
1
0 T
(1)
1 \
0 T
h({t—1)
1
t<0
t 0 T
h(t—1)
t>0
0 t T

Figure 2.17 Calculation of the convolution integral for Example 2.6.

From this expression, we can compute y(¢) for t > 0:
t
¥@) = j e dr = ——e
0

- ol
a

Thus, for all ¢, y(¢) is

Y0 = 2(1 = )

which is shown in Figure 2.18. '

yt) =1 (1- ey

1

a

0 t

Figure 2.18 Response of the system in Example 2.6 with impulse re-
sponse h(t) = u(t) to the input x(f) = e #u(t).
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Example 2.7

Consider the convolution of the following two signals:

() = 1, U< T
0, otherwise ’
_ & o<ipgar
= { 0, otherwise

Solution: for these three intervals, the integration can be carried out
graphically, with the result that

0, t<0

18, O tLT
y() =< Tt—3T? rErad T .

-2+ Tt+ 372, 2T <t<3T

0, 3T <t

which is depicted in Figure 2.21.

X()

1

2T
t<0
0

h(t—17)

11— 2T

2T
0<t<T

t—2T
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ht—)

2T
T<t<2T

o7
I\ 2T<t< 3T

2T
l\ t>3T

t =21

Figure 2.19 Signals x(7) and h(t — ) for different values of ¢ for
Example 2.7.

x(@)h(t—)

0=t T

@

x(t)h(t—1)

t Tt 2T

(1) h(t—r)

2T
= h 2T <t < 3T

(. i
j-=2T
©

Figure 2.20 Product x(7)h(t — 7) for Example 2.7 for the three ranges of
values of ¢ for which this product is not identically zero. (See Figure 2.19.)
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y(t)

1 1
0 T 2T 3T t

Figure 2.21 Signal y(f) = x(f) * h(t) for Example 2.7.

Example 2.8

Let y(t) denote the convolution of the following two signals:

x(t) = e'u(—1), (2.35)
h(t) = u(t — 3). (2.36)

x(7) = ®u(—1)

1

h(t—1)

t-3 0 T
(@

y(t)

Figure 2.22 The convolution problem considered in Example 2.8.
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We see that these signals have regions of nonzero overlap, regardless

of t. When t — 3 = 0, the product of x(7) and A(t — 7) is nonzero for —o <7<t — 3,
and the convolution integral becomes

=3
y(t) = J e¥dr = %e2<'—3>. 237

—00

Fort—3 = 0, the product x(7)h(t—7) is nonzero for —o < 7 < 0, so that the convolution
integral is

¢ 1
y(t) = f e'dr = 3 (2.38)

—00

The resulting signal y(#) is plotted in Figure 72.22(b).
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Glossary — English/Chinese Translation

English Chinese
Linear Time Invariant System SMRATRS
Convolution Sum B
Superposition Sum EINEN
Convolution Integral BERRS
Discrete time G
Continuous Time LA ]
Superposition Property ENEHE
Time Shifted RIS

Scaled Unit FEREA(L
Impulse Sequence B S
Unit Impulse Response BATTRK IR R
Geometric Sum Formula JUFKFIAT
Analogue Signals BIES
Staircase Waveform 4
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