Question 1

Question 2

Let $x(t)=x_{1}(t) x_{2}(t)$. If $x_{1}(t)$ and $x_{2}(t)$ are both even, then

$$
x(-t)=x_{1}(-t) x_{2}(-t)=x_{1}(t) x_{2}(t)=x(t)
$$

and $x(t)$ is even. If $x_{1}(t)$ and $x_{2}(t)$ are both odd, then

$$
x(-t)=x_{1}(-t) x_{2}(-t)=-x_{1}(t)\left[-x_{2}(t)\right]=x_{1}(t) x_{2}(t)=x(t)
$$

and $x(t)$ is even. If $x_{1}(t)$ is even and $x_{2}(t)$ is odd, then

$$
x(-t)=x_{1}(-t) x_{2}(-t)=x_{1}(t)\left[-x_{2}(t)\right]=-x_{1}(t) x_{2}(t)=-x(t)
$$

and $x(t)$ is odd. Note that in the above proof, variable t represents either a continuous or a discrete variable.

Question 3

(a) $x(t)=\cos \left(t+\frac{\pi}{4}\right)=\cos \left(\omega_{0} t+\frac{\pi}{4}\right) \rightarrow \omega_{0}=1$
$x(t)$ is periodic with fundamental period $T_{0}=2 \pi / \omega_{0}=2 \pi$.
(b) $x(t)=\sin \frac{2 \pi}{3} t \rightarrow \omega_{0}=\frac{2 \pi}{3}$
$x(t)$ is periodic with fundamental period $T_{0}=2 \pi / \omega_{0}=3$.
(c) $x(t)=\cos \frac{\pi}{3} t+\sin \frac{\pi}{4} t=x_{1}(t)+x_{2}(t)$
where $x_{1}(t)=\cos (\pi / 3) t=\cos \omega_{1} t$ is periodic with $T_{1}=2 \pi / \omega_{1}=6$ and $x_{2}(t)=\sin (\pi / 4) t=\sin \omega_{2} t$ is periodic with $T_{2}=2 \pi / \omega_{2}=8$. Since
$T_{1} / T_{2}=\frac{6}{8}=\frac{3}{4}$ is a rational number, $x(t)$ is periodic with fundamental period $T_{0}=4 T_{1}=3 T_{2}=24$.
(d) $x(t)=\cos t+\sin \sqrt{2} t=x_{1}(t)+x_{2}(t)$
where $x_{1}(t)=\cos t=\cos \omega_{1} t$ is periodic with $T_{1}=2 \pi / \omega_{1}=2 \pi$ and $x_{2}(t)$ $=\sin \sqrt{2} t=\sin \omega_{2} t$ is periodic with $T_{2}=2 \pi / \omega_{2}=\sqrt{2} \pi$. Since $T_{1} / T_{2}=$ $\sqrt{2}$ is an irrational number, $x(t)$ is nonperiodic.
(e) Using the trigonometric identity $\sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta)$, we can write

$$
x(t)=\sin ^{2} t=\frac{1}{2}-\frac{1}{2} \cos 2 t=x_{1}(t)+x_{2}(t)
$$

where $x_{1}(t)=\frac{1}{2}$ is a dc signal with an arbitrary period and $x_{2}(t)=-\frac{1}{2} \cos 2 t=-\frac{1}{2} \cos \omega_{2} t$ is periodic with $T_{2}=2 \pi / \omega_{2}=\pi$. Thus, $x(t)$ is periodic with fundamental period $T_{0}=\pi$.
(f) $x(t)=e^{j(\pi / 2) t-1]}=e^{-j} e^{j(\pi / 2) t}=e^{-j} e^{j \omega_{0} t} \rightarrow \omega_{0}=\frac{\pi}{2}$
$x(t)$ is periodic with fundamental period $T_{0}=2 \pi / \omega_{0}=4$.

Question 4

(a) By definition (1.19)

$$
u(1-t)= \begin{cases}1 & t<1 \\ 0 & t>1\end{cases}
$$

and $x(t) u(1-t)$ is sketched in Fig. 1-28(a).

Fig. 1-28
(b) By definitions (1.18) and (1.19)

$$
u(t)-u(t-1)= \begin{cases}1 & 0<t \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

and $x(t)[u(t)-u(t-1)]$ is sketched in Fig. 1-28(b).
(c) By Eq. (1.26)

$$
x(t) \delta\left(t-\frac{3}{2}\right)=x\left(\frac{3}{2}\right) \delta\left(t-\frac{3}{2}\right)=2 \delta\left(t-\frac{3}{2}\right)
$$

which is sketched in Fig. 1-28(c).

