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1. Basic Continuous Time Signals

Unit Step Function

The unit step function u(z), also known as the Heaviside unit function,
1s defined as

1 =0
_ 1.18
g {0 ¢ <0 Wi

Note that it 1s discontinuous at ¢ = 0 and that the value at ¢t = 0 1s
undefined. Similarly, the shifted unit step function u(# —#y) 1s defined
as

1 t>1t,
0 t<tg

u(t—ro)ZJl (1.19)
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(a) Unit step function; (b) shifted unit step function

Unit Impulse Function

The unit impulse function d(z), also known as the Dirac delta
function, and it possesses the following properties:

0 t#0
o(t)=
o0 t=0

[  owydi=1
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0(t) cannot be an ordinary function and mathematically it is defined
by:

[~ ¢)dt)dr = $(0) (1.20)

where ¢(?) 1s any regular function continuous at # = 0.

o(t) 1s often called a generalized function and ¢(#) is known as a
testing function. Similarly, the delayed delta function d(z — #y) is
defined by:

f:fﬁ“)@ff‘—fumf = ¢(i) (1.22)

where ¢(?) 1s any regular function continuous at ¢ = #y.

8(t) B(t—to)

v

(a) Unit impulse function; (b) shifted unit impulse function.
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Some additional properties of d(z) are

olat) = i(5(3‘) (1.23)
|al

S(—1)=05(1) (1.24)

x(1)8(1) = x(0)8(7) (1.25)

if x(?) 1s continuous at ¢ = 0, and

XDt — 1)) = x(t,)8(f — 1) (126)

Using Egs. (1.22) and (1.24), any continuous-time signal x(?) can be
expressed as:

x)= [~ x(@)d—1)dr (127)

Complex Exponential Signals

The complex exponential signal

X(r) = elont (1.32)

1s an important example of a complex signal. Using Euler’s
formula, this signal can be defined as

x(t)= el = cog (gl + j sin wyt (1.33)

Thus, x(2) is a complex signal whose real part is cos wot and
imaginary part is sin wot. An important property of the complex
exponential signal x(?) in Eq.(1.32) is that it is periodic. The
fundamental period 7% of x(?) 1s given by:

_2x

Iy =— (1.34)
{'-f.-',:']

Note that x(?) is periodic for any value of wo.
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General Complex Exponential Signals

Lets = o + jw be a complex number. We define x(?) as:
X(f) = e = eWHol = e%(cos wf + jsin wi) (1.35)

Then signal x(?) in Eq. (1.35) 1s known as a general complex
exponential signal whose real part e” cos wt and imaginary part
e” sin wt are exponentially increasing (¢ > 0) or decreasing (¢ <
0) sinusoidal signals.

(b)

(a) Exponentially increasing sinusoidal signal; (b) exponentially
decreasing sinusoidal signal
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Real Exponential Signals

Note that if s = ¢ (a real number), then Eq. (1.35) reduces to a real
exponential signal. ¢ > 0, then x(?) is a growing exponential; and if o
< 0, then x(?) 1s a decaying exponential.

x(r) = e’ (1.36)

v

v

(k)

Continuous-time real exponential signals. (a) 6 > 0; (b) 0 <O0.

Sinusoidal Signals

A continuous-time sinusoidal signal can be expressed as:

x(1) = A cos(w,t + 8) (1.37)

where A is the amplitude (real), wo 1s the radian frequency in radians
per second, and 6 is the phase angle in radians.

2
By (1.38)
{’Uﬂ
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~v

1 -A

Continuous-time sinusoidal signal
fundamental period 7o; fundamental frequency fo:
1
Jfo =— hertz (Hz) (1.39)
I,
w, = 2xf, (1.40)
Using Euler’s formula:
A cos(wyt + 8) = A Re{e®!+0)} (1.41)

A Im{e/@s 8} = A sin(w,t+86) (1.42)

Re: real part of
Im: imaginary part of
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2. Basic Discrete Time Signals

Unit Step Sequence

1 n=0
uln]= 0 - (1.43)

Note that the value of u/n/ at n = 0 is defined [unlike the continuous-
time step function u(?) at ¢ = 0] and equals unity.

uln—K]

Sv

n -2-1 0 1 k

(a) unit step sequence; (b) shifted unit step sequence

Unit Impulse Sequence

] =0
(3[11]={0 :#D (1.45)

Shifted unit impulse (or sample) sequence:

{] n==k
on—k|=

0 n+k (1.46)
3[n] d[n—k]
1 1
I
RANSE A1 B -2-1 01 iR n

@ (b)

Unlike the continuous-time unit impulse function o0(?),0/n/ is defined

without mathematical complication or difficulty. From definitions
(1.45) and (1.46) it 1s readily seen that
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x[n]8[n] = x[0] 5[ n] (1.47)

x[n)o[n — k] = x[k]O[n — k] (1.48)

which are the discrete-time counterparts of Egs. (1.25) and (1.26)

8[n] = uln] — uln — 1] (1.49)
uln]= 2 olk]= E oln—k] (1.50)
k=—oc0 k=0
which are the discrete-time counterparts of Egs. (1.30) and (1.31)

x[n] = 2 x[k]8[n — k] (151)

k=—2

which corresponds to Eq. (1.27) in the continuous-time signal case.

Sinusoidal Sequences

x[n] = A cos(Qun + 6) (1.58)
If n 1s dimensionless, then both £y and 6 have units of radians. Two

examples of sinusoidal sequences are shown in Fig. 1-13. As before,
the sinusoidal sequence in Eq. (1.58) can be expressed as

Acos(Q n + 8) = ARe{e/ @+ 00} (1.59)
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x[n] = cos(g- n)

x[n] = cos(ﬂ)

v
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Sinusoidal sequences. (a) x/n] = cos(wn/6); (b) x/n] = cos(n/2).

3. Systems and Classification of Systems

System Representation

-l Syst y l :
—P> ysTem — : System :
X—P y_’
@ (b)
y="Tx (1.60)
y:output  x: input T: operator
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Deterministic and Stochastic Systems

If the input and output signals x and y are deterministic signals, then
the system 1is called a deterministic system. If the input and output
signals x and y are random signals, then the system is called a
stochastic system.

Continuous-Time and Discrete-Time Systems

(@) (b)

If the input and output signals x and y are continuous-time signals,
then the system is called a continuous-time system (left). If the input
and output signals are discrete-time signals or sequences, then the
system is called a discrete-time system (right).

Systems with Memory and without Memory

A system is said to be memoryless if the output at any time depends
on only the input at that same time. Otherwise, the system is said to
have memory. An example of a memoryless system is a resistor R with
the input x(?) taken as the current and the voltage taken as the output
y(¢). The input-output relationship (Ohm’s law) of a resistor is

y(#) = Rx(1) (L.6l)

An example of a system with memory is a capacitor C with the current
as the input x(?) and the voltage as the output y(?); then

_p(r)=%f_;x(r)a'r (1.62)

A second example of a system with memory is a discrete-time system
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whose input and output sequences are related by:

n

ylnl= % xlk] (1.63)

k:—-:x:

Linear Systems and Nonlinear Systems

If the operator T satisfies the following conditions, then T
is called a linear operator and the system represented by a linear
operator T is called a linear system:

Additivity:
Tix;, + x,} =y +, (1.66)

Homogeneity (or Scaling):
T{ax} = ay (1.67)

Egs. (1.66) and (1.67) can be combined into a single known as
superposition property

T{ax + a,x,} =ay + a,y, (1.68)

Any other systems are classified as nonlinear system.

Time-Invariant and Time-Varying Systems

A system is called time-invariant if a time shift (delay or advance) in
the input signal causes the same time shift in the output signal. Thus,
for a continuous-time system, the system is time-invariant if

Ti{x(i — @} =yt — 7% (1.71)

for any real value of 1. For a discrete-time system, the system is time
invariant (or shift-invariant) if

T{x[n — &1} = y[n — k] (1.72)
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Linear Time-Invariant Systems

If the system is linear and also time-invariant, then it is called a linear
time invariant (LTI) system.

Stable Systems

A system 1s bounded-input/bounded-output (BIBO) stable if for any
bounded input x defined by

|x| =k, (1.73)
the corresponding output y is also bounded defined by
y| =k, (1.74)

where k/ and k2 are finite real constants. An unstable system is one in
which not all bounded inputs lead to bounded output.

Feedback Systems

A special class of systems of great importance consists of systems
having feedback. In a feedback system, the output signal is fed back
and added to the input to the system as shown below.

x(t) ¥(t)
3 p{ System P
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Glossary — English/Chinese Translation

English Chinese
Unit Step Function BB R
Heaviside Unit Function Heaviside EA7TINAE
Unit Impulse Function BB ERER
Dirac Delta Function Jkfise Delta g
Time Shifted i 72
Exponential Function TEEEREL

Euler’s Formula BRI AT

Real Signal HIfES
Complex Signal SHES
Periodic Signal FEHAEES
Fundamental Period BEAE
Fundamental Frequency E=55

Real Part and Imaginary Part SCERFNEER
Radian SN

Discrete Time Signal HHEEES
Continuous Time Signal TR ANES
Unit Step Sequence B{REKFS
Unit Impulse Sequence B
Sinusoidal Sequence IESZ 75
Operator =5
Deterministic System HEMRS
Stochastic System RSt
Nonlinear System MRS

Time Invariant System RHEAZ RS
Time Varying System MERE
Bounded Input BREN
Bounded Output BREH
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