Dr. Norbert Cheung's Lecture Series

Level 2z Topic no: 03

Introduction to Signal and Systems

Contents

- 1. Classification of Signals
- 2. Continuous-Time Signals and Discrete-Time Signals
- 3. Sampled Discrete Time Signals
- 4. Real and Complex Signals
- 5. Deterministic and Random Signals
- 6. Even and Odd Signals
- 7. Periodic and Non-Periodic Signals
- 8. Energy and Power Signals

Reference:

xxx – Schaum's Outline Series

Email:	norbertcheung@szu.edu.cn	
Web Site:	http://norbert.idv.hk	
Last Updated:	2024-02	

8. <u>Classification of Signals</u>

A signal is a function representing a physical quantity or variable, and typically it contains information about the behavior or nature of the phenomenon.

For instance, in an RC circuit the signal may represent the voltage across the capacitor or the current flowing in the resistor.

2. Continuous-Time and Discrete-Time Signals

A signal x(t) is a <u>continuous-time</u> signal if t is a continuous variable. If t is a discrete variable—that is, x(t) is defined at discrete times—then x(t) is a <u>discrete-time</u> signal. Since a discrete-time signal is defined at discrete times, a discrete-time signal is often identified as a sequence of numbers, denoted by $\{xn\}$ or x[n], where n = integer.

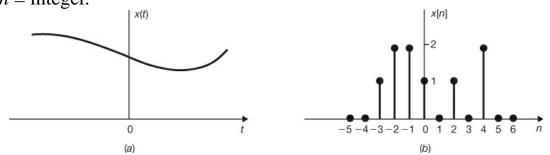


Fig. 1-1 Graphical representation of (a) continuous-time and (b) discrete-time signals.

3. Sampled Discrete Time Signals

A discrete-time signal x[n] may be obtained by sampling a continuous-time signal x(t) such as:

x(t0), x(t1), ..., x(tn), ... or $x_n = x[n] = x(t_n)$

and x_n 's are called <u>samples</u> and the time interval between them is called the <u>sampling interval</u>. When the sampling intervals are equal (uniform sampling), then

 $x_n = x[n] = x(nT_s)$

where the constant T_s is the sampling interval.

A discrete-time signal x[n] can be defined in two ways:

8. We can specify a rule for calculating the nth value of the sequence.

$$x[n] = x_n = \begin{cases} \left(\frac{1}{2}\right)^n & n \ge 0\\ 0 & n < 0 \end{cases} \qquad \{x_n\} = \begin{cases} 1, \frac{1}{2}, \frac{1}{4}, \dots, \left(\frac{1}{2}\right)^n, \dots \end{cases}$$

2. We can also explicitly list the values of the sequence.

$$\{x_n\} = \{\dots, 0, 0, 1, 2, 2, 1, 0, 1, 0, 2, 0, 0, \dots\}$$

$$\{x_n\} = \{1, 2, 2, 1, 0, 1, 0, 2\}$$

or

We use the arrow to denote the n=0 term. We shall use the convention that if no arrow is indicated, then the first term is n=0 and all the values of the sequence are zero for n<0.

The sum and product of two sequences are defined as follows:

$$\{c_n\} = \{a_n\} + \{b_n\} \rightarrow c_n = a_n + b_n$$

$$\{c_n\} = \{a_n\} \{b_n\} \rightarrow c_n = a_n b_n$$

$$\{c_n\} = \alpha \{a_n\} \rightarrow c_n = \alpha a_n \qquad \alpha = \text{constant}$$

4. Real and Complex Signals

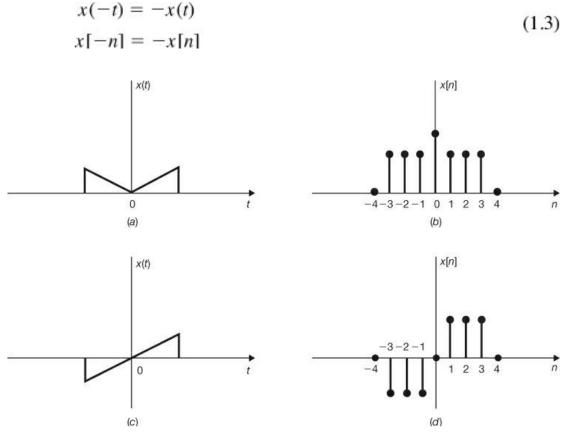
A signal x(t) is a real signal if its value is a real number, and a signal x(t) is a complex signal if its value is a complex number. A general complex signal x(t) is a function of the form

$$x(t) = x_1(t) + jx_2(t)$$
(1.1)

where $x_1(t)$ and $x_2(t)$ are real signals and $j = \sqrt{-1}$.

5. Deterministic and Random Signals

<u>Deterministic signals</u> are those signals whose values are completely specified for any given time. Thus, a deterministic signal can be modeled by a known function of time t.


<u>Random signals</u> are those signals that take random values at any given time

6. Even and Odd Signals

A signal x(t) or x[n] is referred to as an <u>even signal</u> if:

$$\begin{aligned} x(-t) &= x(t) \\ x[-n] &= x[n] \end{aligned} \tag{1.2}$$

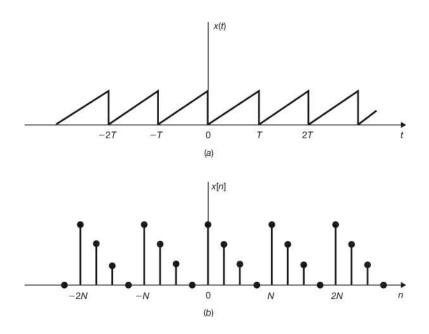
A signal x(t) or x[n] is referred to as an <u>odd signal</u> if

Examples of even signals (a and b) and odd signals (c and d).

Any signal x(t) or x[n] can be expressed as a sum of two signals, one of which is even and one of which is odd.

$$\begin{aligned} x(t) &= x_e(t) + x_o(t) \\ x[n] &= x_e[n] + x_o[n] \end{aligned} \tag{1.4} \\ \begin{aligned} x_e(t) &= \frac{1}{2} \{x(t) + x(-t)\} & \text{even part of } x(t) \\ x_e[n] &= \frac{1}{2} \{x[n] + x[-n]\} & \text{even part of } x[n] \\ x_o(t) &= \frac{1}{2} \{x(t) - x(-t)\} & \text{odd part of } x(t) \\ x_o[n] &= \frac{1}{2} \{x[n] - x[-n]\} & \text{odd part of } x[n] \end{aligned} \tag{1.5}$$

Note that:


- 1. The product of two even signals or two odd signals is an even signal.
- 2. The product of an even signal and an odd signal is an odd signal.

7. Periodic and Non-periodic Signals

A continuous-time signal x(t) is said to be periodic with period T if there is a positive nonzero value of T for which

For analogue signals: x(t + T) = x(t) all t (1.7) x(t + mT) = x(t) (1.8) for all t and any integer mThe <u>fundamental period</u> T_0 of x(t) is the smallest positive value of Tfor which Eq. (1.7) holds

For digital signals: x[n + N] = x[n] all n (1.9) x[n + mN] = x[n] (1.10) for all n and any integer mThe <u>fundamental period</u> N_0 of x[n] is the smallest positive integer Nfor which Eq. (1.9) holds.

8. Energy and Power Signals

Consider v(t) to be the voltage across a resistor *R* producing a current i(t). The instantaneous power p(t) per ohm is defined as:

$$p(t) = \frac{v(t)i(t)}{R} = i^{2}(t)$$
(1.11)

Total energy E and average power P on a per-ohm basis are

$$E = \int_{-\infty}^{\infty} i^2(t) dt \quad \text{joules} \tag{1.12}$$

$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} i^2(t) dt \quad \text{watts}$$
(1.13)

Similarly, for a discrete-time signal x[n], the normalized energy content *E* of x[n] is defined as:

$$E = \sum_{n=-\infty}^{\infty} \left| x[n] \right|^2 \tag{1.16}$$

The normalized average power P of x[n] is defined as:

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$$
(1.17)
--- END ---

Glossary – English/Chinese Translation	Glossary –	English/Chinese	e Translation
---	-------------------	------------------------	---------------

English	Chinese
signals and systems	信号和系统
continuous time signal	连续时间信号
discrete time signal	离散时间信号
sampled discrete time signal	采样离散时间信号
real and complex signals	真实信号和复杂信号
deterministic signal	确定性信号
random signal	随机信号
even signal	均匀信号
odd signal	奇数信号
periodic signal	周期性信号
non-periodic signal	非周期性信号
energy and power	能源和电力
physical quantity	物理量
variable	变量
phenomenon	现象
RC circuit	RC 电路
capacitor	电容器
samples	样品
sampling interval	采样间隔
sequence	序列
real and complex number	实数和复数
analogue signal	模拟信号
digital signal	数字信号
fundamental period	基本周期
instantaneous power	瞬时功率
average power	平均功率
normalized energy	归一化能量
normalized average power	归一化平均功率

2z-03 <Introduction to Signal and Systems>

Your Notes: