D2-1 Patrol Car project

Aim of the project is for student to understand the most basic form of feedback control.

A: Circuit Assembly

- Solder all components on to the PCB. Note the polarity of IC, E capacitor, LED, and Transistor. They cannot be wrongly inserted.
- Solder the battery holder leads. Red is positive.
- Assemble and screw-in the front wheel.
- Assemble the LED and light sensitive varistor on the back side of PCB. They should be about 5mm away from the front steering wheel.
- Assemble the batteries into the kit, and test out the kit.

B: Mechanical Assembly

- Assemble the wheels
- Attach the wheels to the reduction gear unit
- Prepare the conducting wires
- Attach the motor wires to the PCB points

C: Tuning

- Turn on the e-mouse, make sure all LEDS are working, and motor polarity is correct.
- Turn off, and insert the LM393 IC, adjust the variable resistor, so that the mouse can follow the black track smoothly.

<u>Warning:</u> use the test track to test out the e-mouse. If the mouse does not follow the track, you must adjust the two 10K variable resistor, to make it run property.

D: Component List

LM393 IC	(IC1)	Transistor 8550	(Q1, Q2)
IC socket	(IC1)	Self-locking switch	(S1)
e-cap 100 μF	(CIC2)	Motor Gear Mechanics	(M1, M2)
Resistor 3.3K	(R3, R4)	LED red	(D1, D2)
Resistor 51Ω	(R5, R6, R11, R12)	LED transparent	(D3, D4)
Resistor 1K	(R7, R8)	Light sensitive varistor	(R13, R14)
Resistor 10Ω	(R9, R10)	10K variable resistor	(R1,R2)

Circuit Diagram

