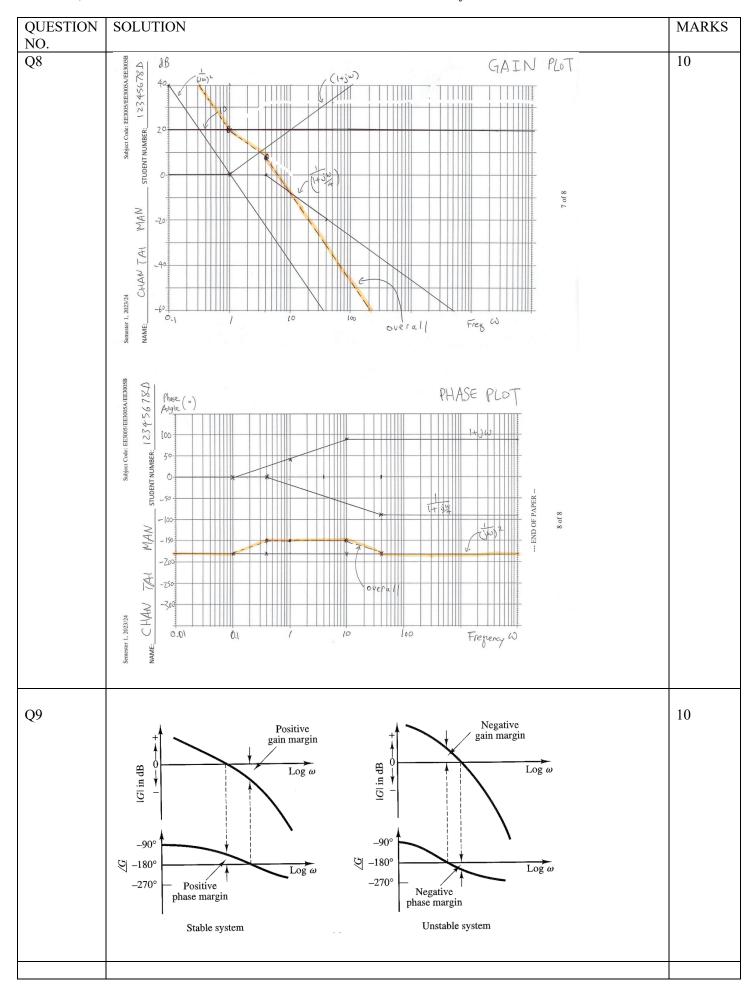
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

SOLUTION & MARKING SCHEME

(Semester 1, 2023/24)


SUBJECT (Code & Title) EE3005/EE3005A/EE3005B Systems and Control	
SUBJECT EXAMINER	Dr N.C. Cheung
SUBJECT MODERATOR	Dr W H. Gu

QUESTION NO.	SOLUTION	MARKS
Q1	where $b_3 = 0$, $c_{11} = \frac{s^2 + 9s + 19}{(s+2)(s+4)} \bigg _{s=-1} = \frac{11}{3} \qquad c_{21} = \frac{s^2 + 9s + 19}{(s+1)(s+4)} \bigg _{s=-2} = -\frac{5}{2}$ $c_{31} = \frac{s^2 + 9s + 19}{(s+1)(s+2)} \bigg _{s=-4} = -\frac{1}{6}$ Thus $Y(s) = \frac{11}{3(s+1)} - \frac{5}{2(s+2)} - \frac{1}{6(s+4)}$ $\mathscr{L}[y(t)] = Y(s) = \frac{1}{2s} - \frac{1}{s+1} - \frac{1}{2(s+2)}$ Therefore $y(t) = \frac{1}{2} \mathscr{L}^{-1} \bigg[\frac{1}{s} \bigg] - \mathscr{L}^{-1} \bigg[\frac{1}{s+1} \bigg] - \frac{1}{2} \mathscr{L}^{-1} \bigg[\frac{1}{s+2} \bigg] = \frac{1}{2} [1 - 2e^{-t} - e^{-2t}] \qquad t > 0$ $\mathscr{L}[y(t)] = Y(s) = \frac{11}{3(s+1)} - \frac{5}{2(s+2)} - \frac{1}{6(s+4)}$	10
	Therefore $y(t) = \frac{11}{3}e^{-t} - \frac{5}{2}e^{-2t} - \frac{1}{6}e^{-4t}$	
Q2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

QUESTION NO.	SOLUTION	MARKS
Q2 cont.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10
Q3	The signal flow graph, Fig. 8-46, is drawn directly from Fig. 7-44. There are two forward paths. The path gains are $P_1 = G_1G_2G_3$ and $P_2 = G_4$. The three feedback loop gains are $P_{11} = -G_2H_1$, $P_{21} = G_1G_2H_1$, and $P_{31} = -G_2G_3H_2$. No loops are nontouching. Hence $\Delta = 1 - (P_{11} + P_{21} + P_{31})$. Also, $\Delta_1 = 1$; and since no loops touch the nodes of P_2 , $\Delta_2 = \Delta$. Thus $T = \frac{P_1\Delta_1 + P_2\Delta_2}{\Delta} = \frac{G_1G_2G_3 + G_4 + G_2G_4H_1 - G_1G_2G_4H_1 + G_2G_3G_4H_2}{1 + G_2H_1 - G_1G_2H_1 + G_2G_3H_2}$	10
Q4		10

QUESTION NO.	SOLUTION			MARKS
	Simplified Flow diagram	-9 -5 -5 -6	-s y	
	Detail 166KS2 166KS2 191KS2	MS WAR	ING H	
Q5	Electrical: $L\frac{di}{dt} + R$	$b\frac{dx}{dt} + kx = p$ $2i + \frac{1}{C}\int idt = e$ $R\frac{dq}{dt} + \frac{1}{C}q = e \text{ (in terms of ele}$	ctric charge, $i=dg/dt$)	10
	dt^2	$dt C^{q}$	oute charge, v and and	
	Translational Mechanical Systems	Rotational Mechanical	Electrical Systems	
	Force (p)	Systems Torque (T)	Voltage (e)	
	Mass (m)	Moment of inertia (J)	Inductance (L)	
	Viscous friction coeff. (b) Spring constant (k)	Viscous friction coeff. (b) Spring constant (k)	Resistance (R) 1/capacitance (1/C)	
	Displacement (x)	Angular displacement (θ)	Charge (q)	
	Velocity (dx/dt)	Angular velocity (ω)	Current (i)	
				ı

QUESTION NO.	SOLUTION	MARKS
Q6	Definition of transient response specifications	10
	1. Delay time td: Time required for the response to reach half the final value. 2. Rise time tr: Time required to rise from 10% to 90% (overdamped) and 0 to 100% (underdamped) of its final value. 3. Peak time tp: Time required to reach the first peak of the overshoot. 4. Maximum overshoot Mp: Occur at the peak time tp. 5. Settling time ts: Time required to reach and stay within a range about the final value of size specified by absolute percentage of final value. (usually 5% or 2%)	
Q7	range about the final value of size specified by absolute	

QUESTION	SOLUTION	MARKS
NO.		
NO. Q10	$u(t)$ β_{n} β_{n-1}	10
	Controllable canonical form Relationship (swap between the two canonical form) 1. Swap the input and the output 2. Change the direction (input/output) of the integrators 3. Change the direction of the signal lines 4. Swap the nodes with the adders	