THE HONG KONG POLYTECHNIC UNIVERSITY

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Subject Code : EE3005/EE3005A/EE3005B

Subject Title : Systems and Control

Session : Semester 1, 2023/24 Venue : SH2

Time Allowed : 3 Hours Subject Examiner(s) : Dr N.C. Cheung

This question paper has a total of 8 pages (attachments included).

Instructions to Candidates: Answer ALL Questions

Physical Constants: Nil

Other Attachments: Reference Formulae

Lin-Log Graph Paper (2 pages)

Available from Invigilator: Lin-Log Graph Paper

Question 1 – Laplace Transform (10 marks)

For the equation listed below, expand Y(s) into a partial fraction expression, hence find its y(t), by using Laplace inverse transform.

$$Y(s) = \frac{s^2 + 9s + 19}{(s+1)(s+2)(s+4)}$$

Question 2 – System Block Diagrams (10 marks)

For the system block diagram shown in Fig. Q2(a), convert it into the form shown in Fig. Q2(b), and find the expressions of X(s) and Y(s).

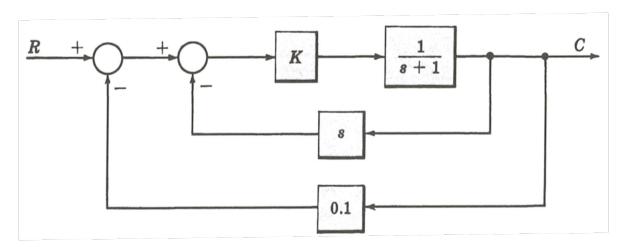


Fig. Q2(a)

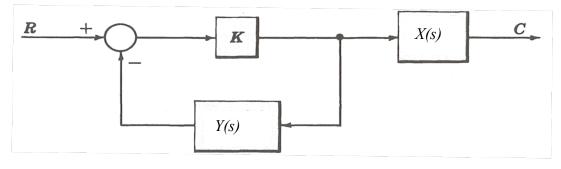


Fig. Q2(b)

Question 3 – Signal Flow Graphs (10 marks)

Determine the transfer function of the signal flow graph shown in Fig. Q3, by using the General Gain Formula.

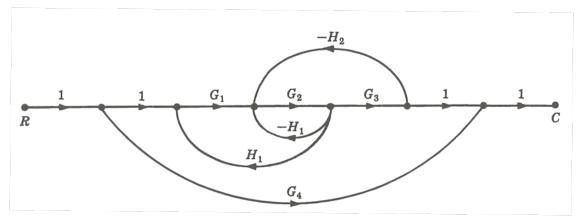
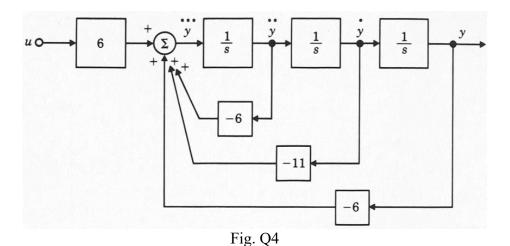



Fig. Q3

Question 4 – Analogue Simulation (10 marks)

Implement the control block diagram shown in Fig. Q4, into an analogue simulation circuit. Your answer should include values of all electronic components.

Question 5 – Modelling (10 marks)

Fig. Q5 shows the diagrams of a mechanical system and an electrical system. By comparing the system force/voltage equations of these two systems, explain how these two systems are <u>analogous</u> to each other.

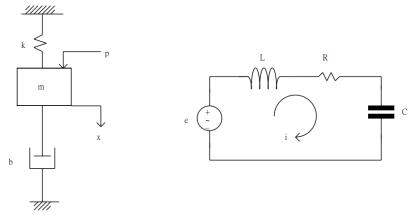


Fig. Q5

Question 6 – Transient and Steady State Analysis (10 marks)

A second-order system is subject to a unit step input. Regarding the output of this response, explain the following terms:

- i. Delay time
- ii. Rise time
- iii. Peak time
- iv. Maximum overshoot
- v. Settling time

Use a graph to support your explanation.

Question 7 – PID Control (10 marks)

List out the step-to-step procedure of obtaining the tuning values of the PID controller, by using the Ziegler-Nichols Transient Response Method.

Question 8 – Bode Plot (10 marks)

By using the lin-log graph paper, plot the magnitude and phase Bode plots for the following function:

$$GH(s) = \frac{10(1+j\omega)}{(j\omega)^2 \left(1 + \frac{j\omega}{4}\right)}$$

Question 9 – Bode Design (10 marks)

By using two sets of gain/phase plots, explain the differences between the gain and phase margins of a stable system and an unstable system.

Question 10 – State Space Analysis (10 marks)

Use a flow diagram to explain the differences between the first (observable) canonical form and the second (controllable) canonical form, and the relationships between them.

- End of Questions -

Time function $f(t)$		Laplace transform $L[f(t)]=F(s)$			
1	Unit impulse $\delta(t)$	1			
2	Unit step 1	1/s			
3	Unit ramp t	$1/s^2$			
4	t ⁿ	$\frac{n!}{s^{n+1}}$			
5	e ^{-at}	$\frac{1}{s+a}$			
6	$1 - e^{-at}$	$\frac{a}{s(s+a)}$			
7	$\sin \omega t$	$\frac{1}{s^2 + \omega^2}$			
8	$\cos \omega t$	$s^2 + \omega^2$			
9	$e^{-at} \sin \omega t$	$\frac{(s+a)^2 + \omega^2}{s+a}$			
10	$e^{-at}\cos \omega t$	$\overline{(s+a)^2+\omega^2}$			

Derivatives: The Laplace transform of a time derivative is

$$\frac{d^n}{dt^n}f(t) = s^n F(s) - f(0)s^{n-1} - f'(0)s^{n-2} - \cdots$$

Where f(0), f'(0) are the initial conditions, or the values of f(t), d/dt f(t) etc. at t = 0

Definite integral $L[\int_{0-}^{t} f(t) \cdot dt] = \frac{F(s)}{s}$

Time delay $L[f(t-T)] = e^{-sT}F(s)$

Linearity $L[f_1(t) \pm f_2(t)] = F_1(s) \pm F_2(s)$

Constant multiplication L[af(t)] = aF(s)

Initial value theorem $f(0) = \lim_{t \to 0} [f(t)] = \lim_{s \to \infty} [sF(s)]$

Final value theorem $f(\infty) = \lim_{t \to \infty} [f(t)] = \lim_{s \to 0} [sF(s)]$

For a system with transfer function $\frac{\omega_n^2}{s^2+2\zeta\omega_n s+\omega_n^2}$ and accepting a unit step input: the approximate 5% settling time is $3/(\zeta\omega_n)$ if ζ is small, the first peak time is $\frac{\pi}{\omega_n\sqrt{1-\zeta^2}}$ if $\zeta<1$,

the maximum percentage overshoot is $e^{-\frac{\zeta\pi}{\sqrt{1-\zeta^2}}} \times 100\%$

NAME:	STUDENT NUMBER:
-------	-----------------

4			 	 	 	
-	-					
		-				
_	_					
_	_					
-						
_	_					
-						
_						
	_					
	+					
_						
1	1		 	 	 	

- End of Paper -