THE HONG KONG POLYTECHNIC UNIVERSITY

DEPARTMENT OF ELECTRICAL ENGINEERING

Subject Code	:	EE3005/EE3005A/EE3005B		
Subject Title	:	Systems and Control		
Session	:	Semester 1, 2022/23	Venue	: SH1
Date	:	3 December 2022	Time	: 15:15 -18:15
Time Allowed	:	3 Hours	Subject Examiner(s)	. Dr Yuan Xin Dr Fung Yu-fai

This question paper has a total of _____ pages (attachments included).

Instructions to Candidates:	This questions paper consists of <u>10</u> questions; Answer <u>ALL</u> questions; This is a <u>CLOSED</u> book examination.
Physical Constants:	Nil
Other Attachments:	Reference Formulae
Available from Invigilator:	Graph paper

DO NOT TURN OVER THE PAGE UNTIL YOU ARE TOLD TO DO SO.

Semester 1, 2022/23

Q1. Find the solution x(t) of the differential equation with Laplace transform, and the initial condition is presented as: x(0) = 0, $\dot{x}(0) = 0$, $t \ge 0$. (12 marks)

 $\ddot{x} + 4\dot{x} - 4 = -3x$

Q2. With the zero initial condition in **Figure 1**, $R=10\Omega$, C=100nF, please calculate the output response Vout(t) if the input Vin(t) is a unit ramp signal. After that, please draw the graph of Vout(t) in time domain (t ≥ 0).

(12 marks)

Figure 1 RC circuit with ideal amplifier

Q3. Given the control system as follows:

Figure 2 Block diagram of the overall system

$$G(s) = \frac{4}{(s+4)(s+5)}$$

(a) For $G_c(s) = 1$, find the steady-state error of the overall system for the unit step input. (6 marks)

(b) If the controller is given by $G_c(s) = 1 + \frac{0.1}{s}$, find the steady-state error for the unit step input.

(3 marks)

(c) If the controller is given by $G_c(s) = \frac{s+4}{s}$, is the system stable, critically stable, or unstable? Please clarify the system stability and stretch the zero-pole location in s domain. (5 marks)

Q4. Simplify the block diagram shown in Figure 3, and calculate the closed loop transfer function $E_o(s)/E_i(s)$. (8 marks)

Figure 3 Block diagram of the overall system

Q5. The characteristic equation of a given system is shown below. (10 marks) $s^4 + 6s^3 + 11s^2 + 6s + K = 0$ Please find the range of K stability using the Routh-Hurwitz stability criterion.

Q6. Consider the following first-order transfer function:

$$G(s) = \frac{1}{(s+10)}$$

(a) Sketch a polar plot of this transfer function. (3 marks) (b) Please obtain the steady-state output in time domain if the input is $x(t) = \cos(10t - \frac{\pi}{3})$ ($t \ge 0$). (7 marks)

Q7. The system is a unit negative feedback system, and **Figure 4** is the Bode Plot of the open-loop system. Please answer the following questions and give detailed reasons.

(a) Is the overall system stable or unstable?	(3 marks)
(b) Is the system a high-pass filter or low-pass filter?	(3 marks)

Figure 4 Bode Plot of the open-loop system

Q8. Please answer the following questions regarding the closed-loop and open-loop control systems.

- (a) Give one real-life example of the application for the closed-loop and open-loop control systems in the lecture theatre. You must explain your answer properly.(2 marks)
- (b) Compare the major differences between closed-loop and open-loop control systems. You should analyze the disturbance rejection and measurement noises suppression of the two systems by giving a detailed scientific analysis.

Q9. A fuzzy controller is defined by two inputs T (Temperature) and H (Humidity), the output is F(Speed of the fan). Since the fan is controlled by PWM, the output is the duty cycle of the PWM signal. The fuzzy memberships for T, H and F are depicted in **Figure 5**, **6** and **7**, and the fuzzy rules are given in **Table 1**. The rules are based on the format IF temperature AND humidity THEN Fan speed. Now if T = 45 and H = 60, determine the corresponding Fan Speed based on the Min-Max and CoG method. Should fuzzy control be applied in speed control of an autonomous vehicle? Explain your answer in detail. (10 marks)

VC – very cold; C – cold; M – moderate; H – hot; VH – very hot VD – very dry; D – dry; M – medium; H – humid; VH – very humid VS – very slow; S – slow; M – medium; F – fast; VF – very fast; NM – no movement

			Temperatu	re		
		VC	С	М	Н	VH
Humidity	VD	NM	VS	М	М	F
	D	NM	S	М	М	F
	М	VS	S	М	F	F
	Н	S	М	F	VF	VF
	VH	S	Μ	F	VF	VF

Figure 5 Fuzzy set for temperature

Figure 6 Fuzzy set for humidity

Figure 7 Fuzzy set for output the Fan Speed

Q10. The position control of the robotic arm is shown in **Figure 8**. The input position signal is a unit step function.

Figure 8 Block diagram of the robotic arm control

- (a) If the plant model $G_p(s) = \frac{6}{(2s+6)}$, please design an optimum PID controller ($G_c(s)$) to make sure the output position signal can be easily controlled while the designed closed-loop system must be a first-order system and there is no steady-state error. Please also analyze how to adjust the dynamic response of the robotic arm position via PID parameters. Note: the values of K_p , K_i , and K_d can be zero. (2 marks)
- (b) If the plant model $G_p(s) = \frac{1}{s}$, please design an optimum PID controller ($G_c(s)$) while the designed closed-loop system must be a *second-order system* and there is no steady-state error. Please also analyze how to control the dynamic response of the robotic arm position via PID parameters. Note: the values of K_p , K_i , and K_d can be zero. (2 marks)
- (c) If the plant model $G_p(s) = \frac{10}{s+10}$, please roughly design a model predictive controller to achieve a fast position tracking ability. (2 marks)
- (d) If the feedback path in **Figure 8** is removed and the controller is designed as $G_c(s) = G_p^{-1}(s)$, please explicitly illustrate the unrealistic reason in practical digital systems (*The answer must be less than 40 words*). (2 marks)
- (e) If the robotic arm input is a rather complex command e.g. $\theta_i(s) = \frac{5s^5+3s+6}{s^{50}+12s^{30}+23}$ and there exists disturbances in real systems, please give a suitable approach to handle each issue. (2 marks)

----- End of Paper -----

Time function $f(t)$		Laplace transform $L[f(t)]=F(s)$	
1	Unit impulse $\delta(t)$	1	
2	Unit step 1	1/s	
3	Unit ramp t	$1/s^{2}$	
4	ť ⁿ	$\frac{n!}{s^{n+1}}$	
5	e ^{-at}	$\frac{1}{s+a}$	
6	$1 - e^{-at}$	$\frac{a}{s(s+a)}$	
7	$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$	
8	$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$	
9	$e^{-at}\sin \omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$	
10	$e^{-at}\cos\omega t$	$\frac{3+\alpha}{(s+\alpha)^2+\omega^2}$	

Reference Formulae

Derivatives: The Laplace transform of a time derivative is $\frac{d^n}{dt^n}f(t) = s^n F(s) - f(0)s^{n-1} - f'(0)s^{n-2} - \cdots$ Where f(0), f'(0) are the initial conditions, or the values of f(t), d/dt f(t) etc. at t = 0

Definite integral	$L[\int_{0-}^{t} f(t) \cdot dt] = \frac{F(s)}{s}$
Time delay	$L[f(t-T)] = e^{-sT}F(s)$
Linearity	$L[f_1(t) \pm f_2(t)] = F_1(s) \pm F_2(s)$
Constant multiplication	$L[af(t)] = \mathbf{a}F(s)$
Initial value theorem	$f(0) = \lim_{t \to 0} \left[f(t) \right] = \lim_{s \to \infty} \left[sF(s) \right]$
Final value theorem	$f(\infty) = \lim_{t \to \infty} [f(t)] = \lim_{s \to 0} [sF(s)]$