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2.32 — Introduction to State Space Control (last updated: Mar 2017)

1. Meaning of State Space

To introduce the subject, let’s take an informal, physical approach to the idea of state.
(An exact mathematical approach is taken in more advanced texts.) First, we make a
distinction between physical and abstract objects. A physical object is an object perceived
by our senses whose time behavior we wish to describe, and its abstraction is the mathe-
matical relationships that give some expression for its behavior. This distinction is made
because, in making an abstraction, it is possible to lose some of the relationships that make
the abstraction behave similar to the physical object. Also, not all mathematical relation-
ships can be realized by a physical object.

Definition 1.1: The state of a physical object is any property of the object which relates
input to output such that knowledge of the input time function for t=1{
and state at time ¢ =to completely determines a unique output for = to.

Example 1.1.

Consider a black box, Fig. 1-1, contain-
ing a switch to one of two voltage dividers.
Intuitively, the state of the box is the posi-
tion of the switch, which agrees with Defi-
nition 1.1. This can be ascertained by the
experiment of applying a voltage V to the
input terminal. Natural laws (Ohm’s law)
dictate that if the switch is in the lower
position A, the output voltage is V/2, and
if the switch is in the upper position B, the
output voltage is V/4. Then the state A
determines the input-output pair to be
(V,V/2), and the state B corresponds to
(V,V/4). Fig.1-1

pa .gs
Definition 1.2: An ab.stract object is the totality of input-output pairs that describe the
behavior of a physical object.

Definition 1.3: The state of an abstract object is a collection of numbers which together

with the input u(f) for all ¢=1t, uniquely determines the output y(t)
for all t=1¢,.

Definition 1.4: A state variable, denoted by the vector x(f), is the time function whose
value at any specified time is the state of the abstract object at that time.

“Definition 1.5: The state space, denoted by =, is the set of all x(?).
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2. Flow Diagrams

Flow diagrams are a simple diagrammatical means of obtaining the state equations.
Because only linear differential or difference equations are considered here, only four basic

objects are needed. The utility of flow diagrams results from the fact that no differenti-
ating devices are permitted. '

Definition 2.1: A summer is a diagrammatical abstract object having = inputs u1(), uz(t),
- - -, Ua(t) and one output y(t) that obey the relationship

Y(t) = Zua(t) = uslt) = - -+ = ua(t)
where the sign is positive or negative as indicated in Fig. 2-1, for example.

uy(t)

ey
Ua(t) —

y(?)

Fig.2-1. Summer

Definition 2.2: A scalor is a diagrammatical abstract object having one input «(t) and one

output y(?) such that the input is scaled up or down by the time function af(t)
as indicated in Fig. 2-2. The output obeys the relationship ¥(t) = «(t) u(t).

u(t) . ——@

- y(t)

Fig.2-2. Scalor

Definition 2.3: An integrator is a diagrammatical abstract object having one input u(t),

one output y(f), and perhaps an initial condition %(t,) which may be shown
or not, as in Fig. 2-3. The output obeys the relationship

) = o) + [ ur)dr

to
’\tﬂo)

Fig.2-3. Integrator at Time ¢
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3. The Transfer Function

Transfer function. The transfer function of a linear, time-invariant, differential
equation system is defined as the ratio of the Laplace transform of the output (response
function) to the Laplace transform of the input (driving function) under the assumption
that all initial conditions are zero.

Consider the linear time-invariant system defined by the following differential
equation:

(r) (n—1) ;
ay + ay +:-+a,_y+ta,y

(m) (m—1) .
=byx + bx +--+b, x+b,x (n=m) (3-1)

where y is the output of the system and x is the input. The transfer function of this
system is obtained by taking the Laplace transforms of both sides of Equation (3-1),
under the assumption that all initial conditions are zero, or

%P[output]

Transfer function = G(s) = Flinput]
u

zero initial conditions

_Y(s) by + b4+ b, s+ b
X(s) ags" +ais" '+ -+ a, s+a,

(3-2)

By using the concept of transfer function, it is possible to represent system dynam-
ics by algebraic equations in s. If the highest power of s in the denominator of the trans-
fer function is equal to n, the system is called an nth-order system.

State-space representation in canonical forms. Consider a system defined by

(n) (n—1}) . {(n) n-1 .
y+a1y +---+an_1y+any=bou +b1(u)+---+bn,1u+bnu (11—1)

where u is the input and y is the output. This equation can also be written as

Y(s) bos" +bys" '+ - + b, s+ b,
U(s) sS"Has" N4+ - a5 +oa,

(11-2)
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4. Observable Canonical Form

Consider a general time-invariant linear differential equation with one input and one
output, with the letter » denoting the time derivative d/dt. Only the differential equations
need be considered, because by Section 2.2 discrete time systems follow analogously.

Py + al'p“"'y + o te,_pytay = Bpu-+t B]p"“u + -+ B, pu+pBu (2.8)
This can be rewritten as
Py — Bu) + " ey —Bu) + - + Ple,_ ¥y —B,_ %) +tay—pu =10
because "'y = p"~lay, which is not true if «, depends on time. Dividing through by p"
and rearranging gives

1
o= Bt SBu—ad) + o+ (B e ) a2

from which the flow diagram shown in Fig. 2-9 can be drawn starting with the output y
at the right and working to the left.

u(t)

Fig.2-9. Flow Diagram of the First Canonical Form

The output of each integrator is labeled as a state variable.
The summer equations for the state variables have the form

Yy = x,+B%
5:1 = —e¥ + 2z, + Blu
¥, = —al + T, + By (2.5)
5’»—-—1 = .—an—ly + xu + Bn—:lu
i?n = —ay + B U
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Using the first equation in (2.5) to eliminate y, the differential equations for the state vari-
ables can be written in the canonical matrix form

1 —a, 1 0 ... 0 b3 Bz - “lﬁo

p ®2 —e, 01 0 T2 By — af,

a . = IIIII s 0 000 .' " e e e e 00 . + : u (2.8)
Tn—1 —a,_, o 0 ... 1 Tn-1 Bn—l - aﬂ—lﬁo
Zn —a, o 0 ... 0 Tn B, —a,B,

We will call this the first canonical form. Note the 1s above the diagonal and the «’s down
the first column of the n X n matrix. Also, the output can be written in terms of the state

vector
' 1
X2
y = (10...00) - + Bu
Zn-1
Tn

(2.7)

Note this form can be written down directly from the original equation (2.3).

5. Controllable Canonical Form

Another useful form can be obtained by turning the first canonical flow diagram “back-
wards.” This change is accomplished by reversing all arrows and integrators, interchang-
ing summers and connection points, and interchanging input and output. This is a heuristic
method of deriving a specific form that will be developed further in Chapter 7.

(b

Flow Diagram of the Second Canonical (Phase-variable) Form

Fig. 2-10.
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Here the output of each integrator has been relabeled. The equations for the state
variables are now :

& = ,
5’2 = &
5:,‘_1 = a:ﬂ (2.8)
. én = —a®, e, T e T, T tu
¥y= B2, +B, %+ -+, + Blu—az,—* —a,_ - o]
In matrix form, (2.8) may be written as
L1 0 1 0 . 0 1 0
p T2 0 0 1 ves 0 2 0
&-t- = | cecciciccssmscesenssenssnas : +i U (2,9)
ZTn-1 0 0 0 1 Zn-1 0
Zn T % %y T%p ey Za 1
1
X2
and y = (Bn—auﬁo Boy—a,_ By .- Bl_“lﬁo) . + B (2.10)
Tn—-1 .
Tn

This will be called the second canonical form, or phase-variable canonical form. Here the
18 are above the diagonal but the o«’s go across the bottom row of the n Xn matrix. By
eliminating the state variables x, the general input-output relation (2.3) can be verified.

5. Jordan Canonical Form

The general time-invariant linear differential equation (2.8) for one input and one out-
put can be written as '

Bp*+pBp*t+ - +B_p+ B"u

y "+ alp“_l + e ta, Pte, (2.12)
By dividing once by the denominator, this becomes
y = ﬁou + (ﬁ; "alﬁo)pn—l + (ﬁgl— azﬁo)p"_z + e+ (Bn—1 - au—1ﬁo)p + ﬁn - anﬁo ” (2‘12)

o+ a;p"“ + vt Pta,

Consider first the case where the denominator polynomial factors into distinct poles A,
i=1,2,...,n Distinct means A=)A; for i j, that is, no repeated roots. Because most
practical systems are stable, the A usually have negative real parts.

P Fap 4 e, _Pta, = @—A)@=2) (P—A,) ‘ (2.13)
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A partial fraction expansion can now be made having the form

_ Py P2 L Pn 2.14
y = ﬁou+p_hu+p__kzu+ +;0—A,.u (2.14)

Here the residue p, can be calculated as

_ (Bl - ajﬁo)’\" - + (Bz - agBo)‘\?_z + -+ (B -1 “u—lﬁo)ki + (ﬁn_ auﬁo) (2.15)
o= (- ‘\'1)(’\1 - Az) s (A=A -—1)(}‘1 — My 1) s (A=)

The partial fraction expansion (2.14) gives a very simple flow diagram, shown in Fig.
2-11 following.

u(t)

Fig.2-11. Jordan Flow Diagram for Distinet Roots

Note that because p, and A, can be complex numbers, the states z, are complex-valued
functions of time. The state equations assume the simple form

x, = A, tu
z, = A, +u
LA I R L I O L D L I L (2'16)
xn = Anxn"‘u

Y = B+ p®, +p &y, + o0 +pnZ,
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To Summarize;

Controllable canonical form. The following state-space representation is called a
controllable canonical form:

X 0 1 0 S 0 X1 0
X, 0 0 1 < 0 X 0

= . : ol le (11-3)

Xn—1 0 0 0 1 Xn—1 0
Xn —dp, —dy-1 TOp—p —a Xn 1
.x;
X2
y=[bu—awbo | bp-t —auabo i -+ | by — a1bo] + bou (11-4)
Xn

The controllable canonical form is important in discussing the pole-placement ap-
proach to the control systems design. [The derivation of Equations (11-3) and (11-4)
from Equation (11-1) or (11-2) is presented in Problem A-11-1.]

Observable canonical form. The following state-space representation is called an
observable canonical form:

- -y = - - - -

)'cl 0 0 o 0 —dy X1 bn - anbo
X 1 0 -+ 0 —ay_ 1 ||% Bp—1 — ay_1bg
- e a
.72?,1 0 0 toe 1 —ay Xn bl - a1b0
- x -
X2
y=[0 0 -+ 0 1| - |+bou (11-6)
Xp—1
Xn

Note that the n X n state matrix of the state equation given by Equation (11-5) is the
transpose of that of the state equation defined by Equation (11-3).
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Diagonal canonical form. Consider the transfer function system defined by
Equation (11-2). Here we consider the case where the denominator polynomial in-
volves only distinct roots. For the distinct roots case, Equation (11-2) can be written as

Y(s) bos" 4+ bs" 1+ - + b, 45+ b,
U(s) (s + p1)(s "‘P;) w5+ pa)
- G C2 Cy
= by + + + o+ 1-
bo s+p1 s+ p; s+ p, (1 7)

The diagonal canonical form of the state-space representation of this system is given by

X —P1 0 X1 1
by —P2 Xz 1
= o NEA L (11-8)
Xn 0 —Pn Xn 1
-x1-
e %]
y=leo & -+ ed| |+ bou (11-9)
Xn

6. General State Equations

Multiple input-multiple output systems can be put in the same canonical forms as single
input-single output systems. Due to complexity of notation, they will not be considered here.
The input becomes a vector u(f) and the output a vector y(f). The components are the inputs
and outputs, respectively. Inspection of matrix equations (2.6), (2.9), (2.21) and (2.88)
indicates a similarity of form. Accordingly a general form for the state equations of a
linear differential system of order n with m inputs and % outputs is

dx/dt = A(t)x + B(t)u
y = Ct)x+D(f)u . (2.39)
where x(f) is an n-vector,
~u(t) is an m-vector,

¥(t) is a k-vector,

A(t) is an n X n matrix,

B(t) is an 7 X m matrix,

C(t) is a &k X n matrix,

D(f) is a k X m matrix.
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Specifically, if the system has only one input % and one output y, the differential equa-
tions for the system are
dx/dt = A(f)x + b(t)u

y = ct(t)x + d(t)u

and similarly for discrete time systems. Here c(t) is taken to be a column vector, and
ct(t) denotes the complex conjugate transpose of the column vector. Hence c¥(f) is a row
vector, and ct(f)x is a scalar. Also, since %, y and d(t) are not boldface, they are scalars.

In general case....
Consider the system defined by
x= Ax + Bu
y =Cx
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