Tutorial 3a

Quadrature Decoding

An optical linear position encoder has three outputs: channel A, channel B, and zero index.

- (a) Draw the typical waveforms of channel A and channel B for the forward and reverse motion of the linear position encoder
- (b) What is quadrature decoding? Describe how the up count and down count pulse can be decoded from the waveforms in (a), by using quadrature decoding.
- (c) Explain how you can use the outputs this linear position encoder to obtain the absolute position and velocity.

Solution

(a)

Forward:

Backward:

(b) Quadrature Decoding: To convert the A-B phase waveforms from to quadrature encoder into up and down count pulses at FOUR times its original resolution.

(c) The hardware configuration

