DEPARTMENT OF ELECTRICAL ENGINEERING

SOLUTION & MARKING SCHEME

(Semester 2, 2022/23)

SUBJECT (Code & Title)	EE520 Intelligent Motion Systems
SUBJECT EXAMINER	NC Cheung
SUBJECT MODERATOR	SX Niu

QUESTION	SOLUTION	MARKS
NO.		
1.	Operation Differences:	
la	Point-to-point: to move from point A to point B within the shortest possible time, without regard for the travel path.	6
	Trajectory path tracking: to move from point A to point B according to a fixed travel path, motion velocity, inter-axes synchronization.	
	Control Hardware Structures:	
	Motor General Controller Jack	
	trajetory + fosition to Velocity drive for load (inspectory path tracking controller structure	
1b	Mixed mode motion control – For one cycle of repeated motion path, there exist more than one form of motion control mode.	4

QUESTION NO.	SOLUTION	MARKS
1c	Define one motion cycle: a. Start, position 1 b. trajectory motion X, Y and Z to position 2 c. clamp motion (trajectory path > slow speed search > touch object > clamp force) d. trajectory motion (Z axis: trajectory path, X&Y: trajectory path) e. clamp with egg position directly on top of bowl, position 5 f. Downwards Z axis (trajectory > slow speed search > touch object > release clamp) g. Return to initial position (X, Y, Z: trajectory path mode) h. Finish one cycle \mathcal{B}_{x} fz	
	() initial () initial () position () epward then travel to egg () clamp () clamp () clamp () clamp	
Q2 (a)	Finand Abelie B A A A A A A A A A A A A A A A A A A A	12
	$\frac{vehity}{vse} = \frac{p_i - p_2}{t} and calculate}{t} crule + le - crule}$	

QUESTION NO.	SOLUTION	MARKS
Q2b	DC Motor: brush wear out, which causes change in control behaviour. BLDC: No brush	8
	DC Motor: brush limits the max current delivered to motor BLDC: No brush	
	DC Motor: Coil inside case, heat dissipation problem BLDC: Coil is outside the case, no heating problem	
Q3a	Stepping motor experience resonance at low speed (see graph). At that region, the torque is small, sometimes virtually zero. Drawing large circle at low speed will come across that region. Therefore it may experience missing step at this region.	8
	Torque resonant Torque region Torque resonant Torque resonant Speed X motor Ymotor Tote Tessnant speed t	
Q3b	Rotary bearing Linear guide & bearing Notor Coupler Coupler Direction of motion	6
	 The two linear guides and the ball screw may not be perfectly parallel with each other. The shaft of the rotary motor may not align perfectly with the ball screw. The ball screw may not be perfectly straight. The two ends of the shafts attached to the coupler may not be exactly aligned The coupling between the ball screw and the nut may have backlash The rotary bearing mounts may not be perfectly perpendicular with the motor mount and the lead screw. 	

QUESTION	SOLUTION	MARKS
NO.		
Q3b Cont'	Construction of the PM linear brushless motor Linear guide & bearing Direction of motion 1. No ball screw. No need to align the ball screw with the linear guides 2. No motor shaft. No need for shaft alignment. 3. No ball screw to cause precision trouble 4. No shaft coupler to cause precision problem 5. No nut to cause trouble 6. No ball bearing mounting to cause trouble	6
Q4a	 For wiring one axes motor feedback control: Phase A+,A-,B+,B-,Z : 5 wires Limit switches both ends: 2 Power+5V: 1 3 phase PWM signal: 3 Ground: usually 3 or more Protection lines: 3 or more Therefore, typically one axis needs 20 wires connection A typical robot has 6 axes, 120 wires connection! Any one failure will make the robot not working. Advantages: SERCOS reduces the number of wirings to two (optical fibre ring) SERCOS is a ring structure, therefore it can self-check any wiring problem Optical fibre is more interference free Exact synchronization between axes Standardized parameters of servo control components, and motion modes Rich auxiliary functions made SERCOS very suitable for motion control. 	10
Q4b	SISO systems – single input and single output system Identification – perform experiments to obtain the system behaviour Modelling – equations to represent the behaviour of the plant Control Strategy Development – develop the control scheme according to plant model Simulation – to predict the control performance by running the model in computer Implementation – to operate the system in actual hardware experiment Performance Index – a list of criteria to determine how good is the system performance System Robustness – system can operate normally in spite of parameter deviations External Disturbance – external condition that may affect the system performance MIMO systems – multi input and multi output system	10

