

Block Diagrams

Open-Loop Transfer Function & Feedforward Transfer Function B(s): Feedback Signal; E(s): Actuating Error Signal

Open – loop transfer function =
$$\frac{B(s)}{E(s)} = G(s)H(s)$$

Feedforward transfer function
$$=\frac{C(s)}{E(s)} = G(s)$$

If the feedback transfer function H(s) is unity, then the open-loop transfer function and the feedforward transfer function are the same

Block Diagrams

Closed-Loop Transfer Function

Closed – loop transfer function =
$$\frac{\mathcal{L}[\text{Output}]}{\mathcal{L}[\text{Input}]} = \frac{C(s)}{R(s)}$$

$$C(s)=G(s)E(s) \\$$

$$E(s) = R(s) - B(s) = R(s) - H(s)C(s)$$

$$C(s) = G(s)[R(s) - H(s)C(s)]$$

$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

From the above closed-loop transfer function,

$$C(s) = \frac{G(s)}{1 + G(s)H(s)}R(s)$$

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

Example 1

C(s)

Determine the transfer function C(s) / R(s) of the below systems

 $G_2(s)$

Cascaded

Feedback C(s) $G_1(s)$

Answer: C(s)

$$\frac{C(s)}{R(s)} = G_1(s)G_2(s)$$

 $C(s) = R(s)G_1(s) + R(s)G_2(s)$

$$\frac{C(s)}{R(s)} = G_1(s) + G_2(s)$$

$$\frac{C(s)}{R(s)} = \frac{G_1(s)}{1 + G_1(s)G_2(s)}$$

Example 2

Obtain the closed-loop transfer function C(s) / R(s).

Example 3

Simplify the below block diagram.

Answer:

Moving the summing point of the negative feedback loop containing H_2 outside the positive feedback loop containing H_1

Example 3

Eliminating the positive feedback loop

Eliminating the loop containing H_2/G_1 gives,

Finally, eliminating the feedback loop results,

THE HONG KONG
POLYTECHNIC UNIVERSITY
香港理工大學

21

Example 4

Simply the below block diagram.

THE HONG KONG
POLYTECHNIC UNIVERSITY
香港理工大學

SPEED

Modelling of Automatic Controllers

 An automatic controller compares the actual value of the plant output with the reference input (desired value), determines the deviation, and produces a control signal that will reduce the deviation to zero or to a small value

24

Signal Flow Graphs

• SFG is another pictorial representation of a system

- Every variable becomes a node and every transmission function A is designated by a branch
- Thus, A represents the system transfer function

SPEED

Signal Flow Graphs

Signal flow graph algebra

Addition

POLYTECHNIC UNIVERSITY 香港理工大學

Transmission

Multiplication

The variable at a node is equal to the sum of all signal entering the node

The variable designated by a node is transmitted on every branch leaving the node

Cascades are reduced as in block diagrams

THE HONG KONG POLYTECHNIC UNIVERSITY

Signal Flow Graphs

Properties

- SFG applies only to linear systems
- The equations for which an SFG is drawn must be algebraic equations in the form of cause-and-effect
- 3. Nodes are used to represent variables. Normally, the nodes are arranged from left to right, from the input to the output, following a succession of cause-andeffect relations through the system
- 4. Signals travel along branches only in the direction described by the arrows of the branches.
- 5. The branch directing from node x_k to x_i represents the dependence of x_i upon x_k , but not the reverse
- 6. A signal x_k traveling along a branch between x_k and x_i is multiplied by the gain (A_{ki}) of the branch, so a signal $A_{ki}x_k$ is delivered at x_i

THE HONG KONG POLYTECHNIC UNIVERSITY

SPEED

Example 9

Construct the signal flow graph of a system described by the following set of algebraic equations:

$$x_2 = A_{12}x_1 + A_{32}x_3$$

$$x_3 = A_{23}x_2 + A_{43}x_4$$

$$x_4 = A_{24}x_2 + A_{34}x_3 + A_{44}x_4$$

$$x_5 = A_{25}x_2 + A_{45}x_4$$

Answer:

Signal Flow Graphs

)efinitions

- Input Node (Source): An input node is a node that has only outgoing branches
- Output Node (Sink): An output node is a node that has only incoming branches. However, this condition is not always readily met by an output
- Path: A path is any collection of a continuous succession of branches traversed in the same direction
- Forward Path: A path of an input node to an output node, no node is traversed more than once
- Feedback Path or Loop: Originates and ends at the same node, no node is traversed more than once
- Self Loop: A feedback loop consisting of one branch
- Path Gain: Product of the branch gains encountered in traversing a path
- Loop Gain: Path gain of a loop
- Non-touching Loops: Two parts of an SFG are non-touching if they do not share a common node

POLYTECHNIC UNIVERSITY

SPEED

Signal Flow Graphs

Forward path?

Gain? A>P Path gain?

Feedback path?

Self loop? Loop gain?

Input node?

Output node?

58

THE HONG KONG POLYTECHNIC UNIVERSITY

SPEED

Signal Flow Graphs

Mason's rule

$$M = \frac{Y}{U} = \frac{1}{\Delta} \sum_{k=1}^{N} (P_k \Delta_k)$$

Y = Output-node variable

U = Input-node variable

N = Total number of forward paths between Y and U

 P_k = Gain of the kth forward paths between Y and U

 $\Delta = 1 - (\text{sum of all individual loop gains}) + (\text{sum of gain products of 2 non$ touching loops) – (sum of gain products of 3 non-touching loops) + ...

 $\Delta_k = \Delta$ evaluated with all loops touching P_k eliminated (i.e. set equal to zero)

SPEED

Example 10

Consider the signal flow graph constructed in Example 9. Determine the gain by using the Mason's rule.

LILY = a25 a5 a4x D= 1- (LI+Lz+Lz+Lz+Lz)

4 (664).

POLYTECHNIC UNIVERSITY 香港理工大學

SPEED

Example 12

Construct a signal flow graph for the following block diagram and hence determine the transfer function (Y/U).

Answer:

Example 12

P1 = G, G2 G3

hattasis of Protessional Education and Essential Development 資本品度表別 SPEED P2 = G, G4

D=1-(L,+L2+ L3+ (4+(1-)

Ly = -G, 6263

W=-646,

THE HONG KONG POLYTECHNIC UNIVERSITY

Example 12

Answer:

Try it yourself!