Question

Nichols Chart

3. Open-loop frequency response tests on a control system with unity gain negative feedback yield the following data.

Frequency	Gain	Phase
ω (rad/s)	(Output / Input)	(degree)
0.4	2.452	-101.31
0.8	1.161	-111.80
1.2	0.715	-120.96
1.4	0.585	-124.99
1.8	0.413	-131.99
2.0	0.354	-135.00
4.0	0.112	-153.43
8.0	0.030	-165.96

A first-order lag with a time constant of 1 sec, $G_1(s) = \frac{1}{s+1}$, is now inserted in the forward path of the control loop. Use a Nichols chart to determine for the modified system

- (a) the gain margin;
- (b) the phase margin.

(Ans: (a) 9.4 dB; (b) 33°)

Solution

(a) First-order lag system &
$$G_1(j\omega) = \frac{1}{j\omega + 1}$$

$$|G(j\omega)| = 20 \log \left(\frac{1}{\sqrt{\omega^2 + 1}}\right) = -10 \log(\omega^2 + 1)$$

$$\angle G(j\omega) = -\tan^{-1}\omega$$

Change the gain value to dB for the given open-loop frequency response.

ω (rad/s)	Open-loop system: $G_p(j\omega)$		$G_1(j\omega)$		Combined system: $G_1(j\omega)G_p(j\omega)$	
	Gain (dB)	Phase (°)	Gain (dB)	Phase (°)	Gain (dB)	Phase (°)
0.4	7.79	-101.31	-0.64	-21.80	7.14	-123.11
0.8	1.29	-111.80	-2.15	-38.66	-0.85	-150.46
1.2	-2.92	-120.96	-3.87	-50.19	-6.79	-171.16
1.4	-4.65	-124.99	-4.71	-54.46	-9.37	-179.45
1.8	-7.68	-131.99	-6.27	-60.95	-13.96	-192.94
2.0	-9.03	-135	-6.99	-63.43	-16.02	-198.43
4.0	-19.03	-153.43	-12.30	-75.96	-31.33	-229.40
8.0	-30.37	-165.96	-18.13	-82.88	-41.50	-248.84

Use the data of the combined system for drawing on the Nichlos chart.

From the Nichlos chart, gain margin = 9.4 dB and phase margin = 33°

Question

4. A closed-loop control system consists of three elements A, B and C in series in the forward path and a unity gain feedback loop.

Component A is an amplifier with gain G.

Component B has the transfer function $\frac{1}{1+0.2s}$.

The transfer function of component C is not known, but frequency response tests on this component give the following results.

Frequency	Gain	Phase
ω (rad/s)	(Output / Input)	(degree)
5.0	0.894	-63.26
7.0	0.714	-89.12
10.0	0.447	-116.34
10.8	0.394	-121.42
20.0	0.124	-152.39

- (a) Show that if G > 5, the system will be unstable.
- (b) If the gain G is fixed at 6, the system can be stabilized by putting an additional component with transfer function, $G_p(s) = 1 + Ks$, in series with A, B and C. Show that neutral stability now occurs when K = 0.0111.

Solution

4. (a) Similar to Q3

$$G_B(j\omega) = \frac{1}{1 + 0.2j\omega}$$

$$|G(j\omega)| = \frac{1}{\sqrt{(0.2\omega)^2 + 1}}$$
 and $\angle G(j\omega) = -\tan^{-1} 0.2\omega$

	$G_{A}(j\omega)$		$G_B(j\omega)$		$G_{\mathcal{C}}(j\omega)$		$G_A(j\omega)G_B(j\omega)G_C(j\omega)$	
ω	Gain	Phase (°)	Gain	Phase (°)	Gain	Phase (°)	Gain	Phase (°)
5	G	0	0.707	-45	0.894	-63.26	0.632G	-108.26
7	G	0	0.581	-54.46	0.714	-89.12	0.415G	-143.58
10	G	0	0.447	-63.43	0.447	-116.34	0.2G	-179.77
10.8	G	0	0.4201	-65.16	0.394	-121.42	0.1655 <i>G</i>	-186.58
20	G	0	0.243	-75.96	0.124	-152.39	0.03G	-228.35

Gain margin: G.M = 1 / 0.2GFor stability,

For stability,
$$\frac{1}{0.2G} > 1 \quad or \quad G < 5$$

Hence, the system is unstable if G > 5.

Solution

4. (b) The transfer function of the compensation element: $G_c(j\omega) = 1 + Kj\omega$, then $|G(j\omega)| = \sqrt{(\omega K)^2 + 1}$ and $\angle G(j\omega) = \tan^{-1} K\omega$

	$G_A(j\omega)G_B(j\omega)$	$(\omega)G_C(j\omega)$	$G_c(j\omega)$		
ω	Gain	Phase (°)	Gain	Phase (°)	
5	3.792	-108.26	$\sqrt{25K^2+1}$	tan ⁻¹ 5 <i>K</i>	
7	2.49	-143.58	$\sqrt{49K^2+1}$	tan ⁻¹ 7 <i>K</i>	
10	1.2	-179.77	$\sqrt{100K^2+1}$	tan ⁻¹ 10 <i>K</i>	
10.8	0.993	-186.58	$\sqrt{116.64K^2+1}$	tan ⁻¹ 10.8 <i>K</i>	
20	0.18	-228.35	$\sqrt{400K^2+1}$	tan ⁻¹ 20 <i>K</i>	

Consider the design point at $\omega = 10.8$ rad/s, for neutral stability,

$$(\sqrt{116.64K^2 + 1})(0.993) = 1 \Rightarrow K = 0.0110$$

(It will be more accurate if you take more decimal places in calculating the Gain of various elements.)