Compensators / Controllers Design

Question

5. An open-loop frequency response test on a unit feedback control system produced the data below.

Frequency	Gain	Phase		
ω (rad/s)	(dB)	(degree)		
0.3	20	-19		
1	18	-51		
3	10.5	-91		
6	5	-116		
10	-1	-135		
20	-12	-163		
30	-19	-177		
60	-31.5	-201		
100	-40	-218		

- (a) A phase-lead series compensating network, having the transfer function, $G_c(s) = \frac{0.4(1+0.08s)}{1+0.032s}$, is then incorporated to improve the system performance. Plot the gain and phase characteristics on a Nichols' chart.
- (b) If the system gain is then increased by 16 dB, determine the characteristics of the compensated system the resulting
 - (i) gain margin;
 - (ii) and phase margin.

(Ans: (b)(i) 14.6 dB, (b)(ii) 43°)

Solution

5. (a) The transfer function of the phase-lead compensator is,

$$G_c(j\omega) = \frac{0.4(1 + 0.08j\omega)}{1 + 0.032j\omega}$$

$$|G_c(j\omega)| = 20 \log \frac{0.4\sqrt{(0.08\omega)^2 + 1}}{\sqrt{(0.032\omega)^2 + 1}}$$
 and $\angle G_c(j\omega) = \tan^{-1} 0.08\omega - \tan^{-1} 0.032\omega$

ω	$G_p(j\omega)$		$G_c(j\omega)$		$G_{\mathcal{C}}(j\omega)G_{p}(j\omega)$			
	Gain (dB)	Phase (°)	Gain (dB)	Phase (°)	Gain (dB)	Phase (°)		
0.3	20	-19	-7.96	0.82	12.04	-18.19		
1	18	-51	-7.94	2.74	10.06	-48.26		
3	10.5	-91	-7.76	8.01	2.74	-82.99		
6	5	-116	-7.22	14.77	-2.22	-101.23		
10	-1	-135	-6.23	20.92	-7.23	-114.08		
20	-12	-163	-3.94	25.38	-15.94	-137.62		
30	-19	-177	-2.50	23.55	-21.50	-153.45		
60	-31.5	-201	-0.86	15.74	-32.36	-185.26		
100	-40	-218	-0.34	10.23	-40.34	-207.77		

- 5. (b) (i) If the system gain is increased by 16 dB, the curve in the Nichols chart in part (a) & will shift up by 16 dB which is shown in the Nichols chart in part (a) as well.
 - (ii) From the new curve, Gain margin = 14.6 dB and Phase margin = 43°

The Nichols chart,

Question

6. Consider the control system shown below in which a PID controller is used to control the system. The PID controller has the transfer function,

$$G_c(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right).$$

Although many analytical methods are available for the design of a PID controller for the present system, lets us apply Ziegler-Nichols tuning rule for the determination of the values of parameters K_p , T_i , and T_d .

(Ans: $K_p = 18$, $T_i = 1.405$, $T_d = 0.351$)

Solution

6. By setting $T_i = \infty$ and $T_d = 0$ (i.e. only K_p), we obtain the closed-loop transfer function as follow,

$$\frac{C(s)}{R(s)} = \frac{K_p}{s(s+1)(s+5) + K_p}$$

The value of K_p that makes the system marginally stable (so that sustained oscillation occurs) by using the Routh's stability criterion, $\Delta(s) = s^3 + 6s^2 + 5s + K_p = 0$

$$\therefore \frac{30 - K_p}{6} = 0 \Rightarrow K_p = 30$$

With gain K_p sets equal to K_c (= 30), the characteristic equation becomes,

$$\Delta(s) = s^3 + 6s^2 + 5s + 30 = 0$$

We substitute $s = i\omega$ into the $\Delta(s)$, we have

$$(j\omega)^3 + 6(j\omega)^2 + 5j\omega + 30 = 0$$

$$-j\omega^3 - 6\omega^2 + 5j\omega + 30 = 0$$

Rearranging the terms, we have

$$j\omega(5-\omega^2) + 6(5-\omega^2) = 0$$

Hence, we have

$$5 - \omega^2 = 0 \Rightarrow \omega = \pm \sqrt{5}$$
 and $\omega = 0$

The period of sustained oscillation is,

$$T_c = \frac{2\pi}{\omega} = 2.8099 \text{ sec}$$

Referring to Ziegler and Nichols tuning rule,

$$K_p = 0.6K_c = (0.6)(30) = 1.8$$

 $T_i = 0.5T_c = (0.5)(2.8099) = 1.405$
 $T_d = 0.125T_c = (0.125)(2.8099) = 0.351$