Question

Gain and Phase Margin

3. Determine the value of K for the open-loop transfer function of a control system,

$$G(s) = \frac{K}{s(s+2)(s+10)}$$

such that the system may have

- (a) a gain margin of 6 dB; and (b) a phase margin of 45° analytically.
- (c) Repeat (a) and (b) **graphically** by using $\omega = 0.01$, 0.04, 0.08, 0.1, 0.5, 0.8, 1, 5, 8, 10 and 20 rad/s.

(Ans: (a) K = 120.28; (b) K = 37.22; (c) 157.18 and 35.18)

3. (a)

$$G(s) = \frac{K}{s(s+2)(s+10)}$$

$$G(j\omega) = \frac{K}{j\omega(j\omega+2)(j\omega+10)}$$

$$|G(j\omega)| = 20 \log \frac{K}{\omega \sqrt{\omega^2 + 2^2} \sqrt{\omega^2 + 10^2}}$$
 (dB)

$$\angle G(j\omega) = -90^{\circ} - \tan^{-1}\frac{\omega}{2} - \tan^{-1}\frac{\omega}{10} \quad (^{\circ})$$

When system phase $\phi = -180^{\circ}$, and put into the phase equation, we can find the phase crossover frequency, ω_{pc} :

$$-180^{\circ} = -90^{\circ} - \tan^{-1}\frac{\omega}{2} - \tan^{-1}\frac{\omega}{10} \quad \Rightarrow \quad \tan^{-1}\frac{\omega}{2} + \tan^{-1}\frac{\omega}{10} = 90^{\circ}$$

$$\frac{\frac{\omega}{2} + \frac{\omega}{10}}{1 - \frac{\omega^2}{20}} = \infty \quad \Rightarrow \quad 1 - \frac{\omega^2}{20} = 0$$

$$\omega = \sqrt{20}$$
 rad/s or 4.47 rad/s

Substitute into this phase crossover frequency into the magnitude equation, we have

$$|G(j\omega)| = 20 \log \frac{K}{\sqrt{20}\sqrt{(\sqrt{20})^2 + 2^2}\sqrt{(\sqrt{20})^2 + 10^2}} = 20 \log \frac{K}{\sqrt{20}\sqrt{24}\sqrt{120}}$$

If gain margin = 6 dB, we have

$$20 \log \frac{K}{\sqrt{20}\sqrt{24}\sqrt{120}} = -6$$

$$K = 120.28$$

3. (b) With the phase margin = 45° , the corresponding open-loop phase = -135°

$$-135^{\circ} = -90^{\circ} - \tan^{-1}\frac{\omega}{2} - \tan^{-1}\frac{\omega}{10} \implies \tan^{-1}\frac{\omega}{2} + \tan^{-1}\frac{\omega}{10} = 45^{\circ}$$

$$\frac{\frac{\omega}{2} + \frac{\omega}{10}}{1 - \frac{\omega^2}{20}} = 1 \quad \Rightarrow \quad 1 - \frac{\omega^2}{20} = \frac{\omega}{2} + \frac{\omega}{10} \quad \Rightarrow \quad \frac{\omega^2}{20} + \frac{6\omega}{10} - 1 = 0 \quad \Rightarrow \quad \frac{\omega^2 + 12\omega - 20}{20} = 0$$

 $\omega = 1.48 \text{ rad/s or} - 13.48 \text{ rad/s (rejetced)}$

Noting that the magnitude of the system ($|G(j\omega)|$) must be equal to 0 dB at $\omega = 1.48$ rad/s, we have

$$|G(j\omega)| = 20 \log \frac{K}{1.48\sqrt{(1.48)^2 + 2^2}\sqrt{(1.48)^2 + 10^2}} = 0$$

$$K = 37.22$$

3. (c) From the system magnitude and phase equations obtained in part (a), we can draw the exact Bode diagrams

611018		
ω (rad/s)	$ G(j\omega) $ (dB)	∠ <i>G</i> (<i>j</i> ω) (°)
0.01	14.0	-90.3
0.04	1.9	-91.4
0.08	-4.1	-92.7
0.1	-6.0	-93.4
0.5	-20.2	-106.9
0.8	-24.8	-116.4
1	-27.0	-122.3
5	-49.6	-184.8
8	-58.5	-204.6

10	-63.2	-213.7
20	-79.1	-237.7

From the exact bode diagrams, the gain margin = 50 dB (G.M. = $0 - |G(j\omega)|$) at 5.1 rad/s. Phase margin = 89° at 0.05 rad/s.

G.M. = 6 = 0 -
$$|G(j\omega)|$$
 (phase crossover frequency will not change)

$$\therefore |G(j\omega)| = 20 \log \frac{K}{5.1\sqrt{(5.1)^2 + 2^2}\sqrt{(5.1)^2 + 10^2}} = -6$$

$$K = 157.18$$

$$P.M. = 180^{\circ} + \angle G(j\omega) = 45^{\circ}, \angle G(j\omega) = -135^{\circ}$$

From the exact bode diagrams, the gain crossover frequency at $\angle G(j\omega) = -135^{\circ}$ is 1.42 rad/s

Question

4. Obtain the phase and gain margins of the system shown below for the two cases: (a) K = 10 and (b) K = 100 by plotting Bode Diagram. Which system is stable? (Ans: (a) Gain margin = 8.3 dB, phase margin = 26°; (b) Gain margin = -11 dB, phase margin = -19°)

4. From the block diagram, the open-loop transfer function is,

$$G(s) = \frac{K}{s(s+1)(s+5)}$$

Plot the exact Bode diagrams for finding gain margin and phase margin with K = 10 and K = 100.

$$G(j\omega) = \frac{K}{j\omega(j\omega+1)(j\omega+5)}$$

$$|G(j\omega)| = 20 \log \frac{K}{\omega \sqrt{\omega^2 + 1^2} \sqrt{\omega^2 + 5^2}}$$
 (dB)

$$\angle G(j\omega) = -90^{\circ} - \tan^{-1}\omega - \tan^{-1}\frac{\omega}{5} \quad (^{\circ})$$

Change of gain K will Not alter the system phase, we have

ω (rad/s)	Magnitude (dB)		Phase (°)
	K = 10	K = 100	
0.1	25.98	45.98	-96.86
0.2	19.82	39.82	-103.13
0.4	13.31	33.31	-116.38
0.6	9.06	29.06	-127.81
0.8	5.70	25.70	-137.75
1	2.84	22.84	-146.31
2	-7.63	12.37	-175.24
4	-20.47	-0.47	-204.62
6	-29.10	-9.1	-220.73
8	-35.68	-15.68	-230.87
10	-41.01	-21.01	-237.72

K	Gain margin	Phase margin
10	+8.3 dB	+26°
100	−11 dB	-19°

Hence, the system is stable for K = 10, but unstable for K = 100.

Question

5. Below shows a block diagram of a space vehicle control system. Determine the gain K such that the phase margin is 50°. (Ans: K = 1.826)

End of Tutorial Questions (Part 3)

5. From the block diagram, the open-loop transfer function, we have

$$G(s) = \frac{K(s+2)}{s^2}$$

$$G(j\omega) = \frac{K(j\omega + 2)}{(j\omega)^2}$$

$$|G(j\omega)| = 20 \log \frac{K\sqrt{\omega^2 + 2^2}}{\omega^2}$$
 (dB)

$$\angle G(j\omega) = \tan^{-1}\frac{\omega}{2} - 90^{\circ} - 90^{\circ}$$
 (°)

The required phase margin of 50° means that the system phase be equal to -130° . Hence, the gain crossover frequency can be found from the system phase equation as follow,

$$-130^{\circ} = \tan^{-1}\frac{\omega}{2} - 90^{\circ} - 90^{\circ} \implies \tan^{-1}\frac{\omega}{2} = 50^{\circ}$$

$$\omega_{gc} = 2.3835 \text{ rad/s}$$

Noting that the magnitude of the system ($|G(j\omega)|$) must be equal to 0 dB at $\omega = 2.3835$ rad/s, we have

$$20\log\frac{K\sqrt{2.3835^2 + 2^2}}{2.3835^2} = 0$$

$$K = 1.826$$