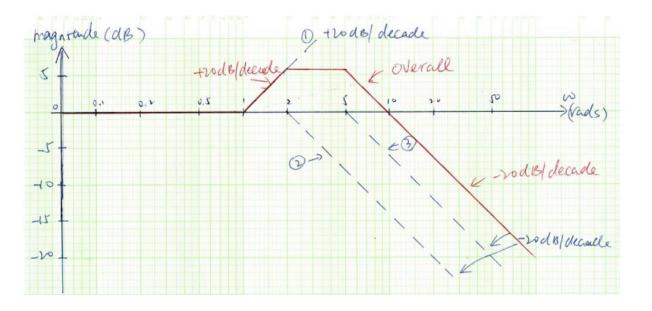
Question 1

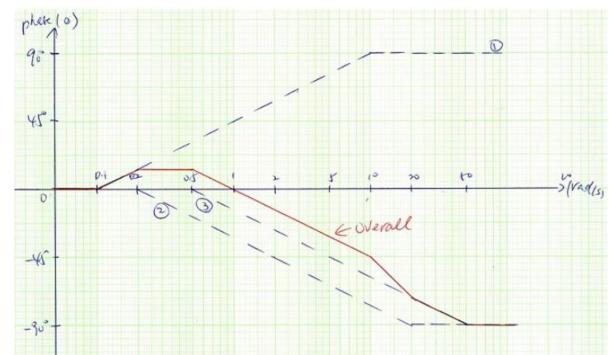
Bode Plot

Plot the asymptotic and exact Bode diagrams of the open-loop transfer function, $G(s) = \frac{10(s+1)}{(s+2)(s+5)}.$

$$G(s) = \frac{10(s+1)}{(s+2)(s+5)}.$$

Q1 solution

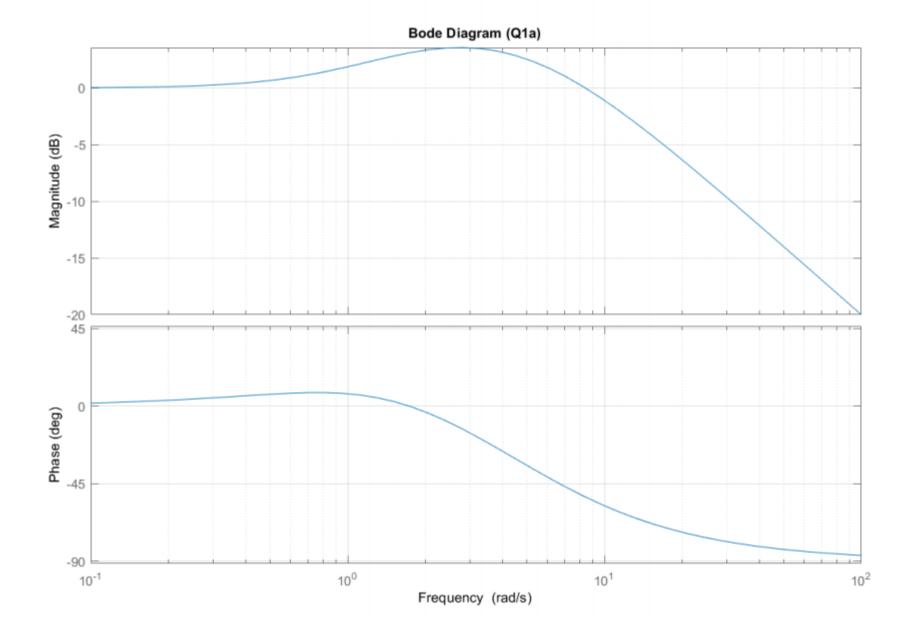

1. (a)
$$G(s) = \frac{10(s+1)}{(s+2)(s+5)}$$


Asymptotic Bode Diagram:

$$G(j\omega) = \frac{10(j\omega+1)}{(j\omega+2)(j\omega+5)} = \frac{10(j\omega+1)}{\left(1+\frac{j\omega}{2}\right)(2)\left(1+\frac{j\omega}{5}\right)(5)} = \frac{j\omega+1}{\left(1+\frac{j\omega}{2}\right)\left(1+\frac{j\omega}{5}\right)}$$

From the standard form, we have identified 3 basic factors:

- 1. Zero: $j\omega + 1$; Corner frequency: $\omega = 1$ rad/s
- 2. Pole: $1 + \frac{j\omega}{2}$; Corner frequency: $\omega = 2$ rad/s
- 3. Pole: $1 + \frac{j\omega}{5}$; Corner frequency: $\omega = 5$ rad/s


Exact Bode Diagram:

$$G(j\omega) = \frac{10(j\omega + 1)}{(j\omega + 2)(j\omega + 5)}$$

$$|G(j\omega)| = 20 \log \frac{10\sqrt{1^2 + \omega^2}}{\sqrt{2^2 + \omega^2}\sqrt{5^2 + \omega^2}}$$
 (dB)

$$\angle G(j\omega) = \tan^{-1}\omega - \tan^{-1}\frac{\omega}{2} - \tan^{-1}\frac{\omega}{5} \quad (^{\circ})$$

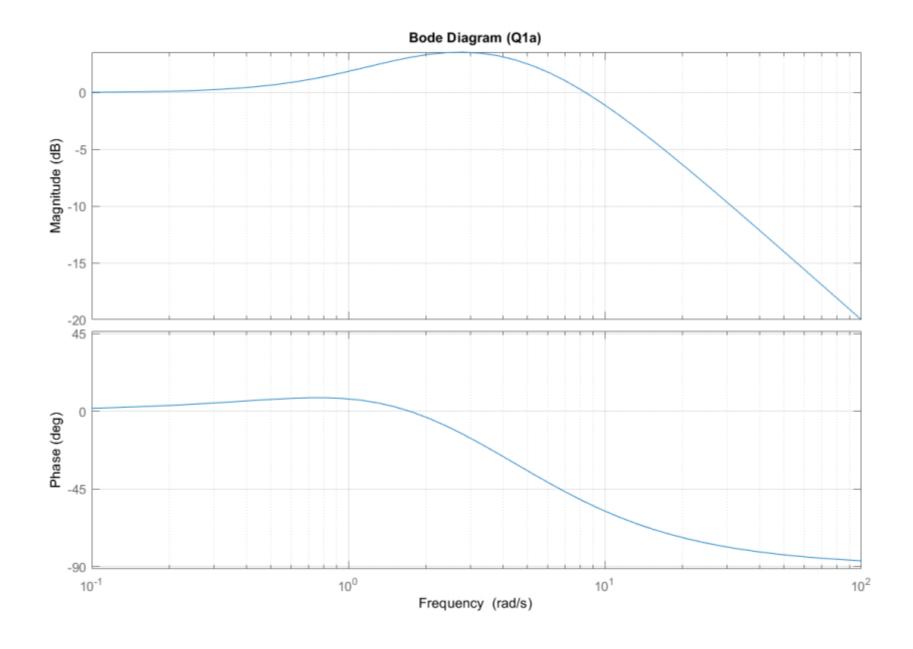
ω (rad/s)	Magnitude (dB)	Phase (°)
0.1	0.0306	1.702
0.5	0.663	6.818
1	1.871	7.125
2	3.335	-3.366
5	2.536	-34.508
8	0.310	-51.083
10	-1.096	-57.836
15	-4.037	-67.784
20	-6.316	-73.116
30	-9.676	-78.633
50	-14.028	-83.145
80	-20.012	-85.708

Question 2

2. Draw the exact Bode diagram for the following open-loop transfer function using a frequency range from 0.05 to 0.25 rad/s, in step of 0.05 rad/s.

$$G(s) = \frac{2}{(1+2s)(1+3s)(1+11s)^2}$$

Exact Bode Diagram:


Solution

$$G(j\omega) = \frac{10(j\omega + 1)}{(j\omega + 2)(j\omega + 5)}$$

$$|G(j\omega)| = 20 \log \frac{10\sqrt{1^2 + \omega^2}}{\sqrt{2^2 + \omega^2}\sqrt{5^2 + \omega^2}}$$
 (dB)

$$\angle G(j\omega) = \tan^{-1}\omega - \tan^{-1}\frac{\omega}{2} - \tan^{-1}\frac{\omega}{5} \quad (^{\circ})$$

ω (rad/s)	Magnitude (dB)	Phase (°)
0.1	0.0306	1.702
0.5	0.663	6.818
1	1.871	7.125
2	3.335	-3.366
5	2.536	-34.508
8	0.310	-51.083
10	-1.096	-57.836
15	-4.037	-67.784
20	-6.316	-73.116
30	-9.676	-78.633
50	-14.028	-83.145
80	-20.012	-85.708

