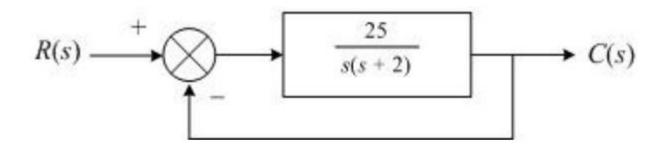
Given the following system,



- (a) Determine the damping ratio, undamped natural frequency and damped natural frequency.
- (b) Obtain the unit-step response c(t) of this system when all initial conditions are zero.
- (c) Determine the rise time,  $t_r$ , the peak time  $t_p$ , the 2% settling time  $t_s$  and the percentage of overshoot Ans: (a)  $\zeta = 0.2$ ,  $\omega_n = 5$  rad/s,  $\omega_d = 4.899$  rad/s; (b)  $c(t) = 1 1.021e^{-t}\sin(4.899t + 1.369)$ ; (c)  $t_r = 0.362$  sec,  $t_p = 0.641$  sec,  $t_s = 4$  sec,  $t_p = 0.641$  sec, t

## Solution

(a) The closed-loop transfer function,

$$\frac{C(s)}{R(s)} = \frac{\frac{25}{s(s+2)}}{1 + \frac{25}{s(s+2)}} = \frac{25}{s(s+2) + 25} = \frac{25}{s^2 + 2s + 25}$$

Compared the above transfer function with the 2<sup>nd</sup> order system, we have

$$\frac{C(s)}{R(s)} = \frac{25}{s^2 + 2s + 25} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Equating terms, we have  $2\zeta\omega_n = 2$ ,  $\omega_n^2 = 25$  $\omega_n = 5 \text{ rad/s}$ ,  $(2\zeta)(5) = 2 \Rightarrow \zeta = 0.2$ 

Since 
$$\omega_d = \omega_n \sqrt{1 - \zeta^2} = (5)(\sqrt{1 - 0.2^2}) = 4.899 \text{ rad/s}$$

(b) The unit-step response,

$$C(s) = \frac{25}{s^2 + 2s + 25} \frac{1}{s}$$

Taking inverse Laplace transform, we have

$$c(t) = 1 - \frac{1}{\sqrt{1 - 0.2^2}} e^{-(0.2)(5)t} \sin\left(5\sqrt{1 - 0.2^2}t + \phi\right), \phi = \cos^{-1} 0.2$$

$$\therefore c(t) = 1 - 1.021e^{-t}\sin(4.899t + 1.369)$$

(c) Rise time:

$$t_r = \frac{\pi - \beta}{\omega_d} = \frac{\pi - 1.3694}{4.899} = 0.362 \text{ sec}$$

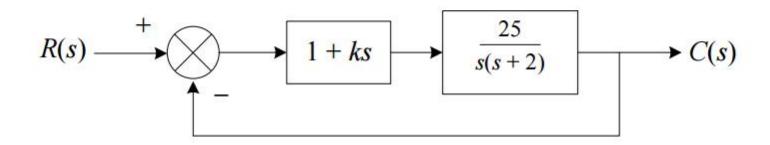
$$\beta = \tan^{-1} \frac{\omega_d}{\zeta \omega_n} = \tan^{-1} \frac{4.899}{(0.2)(5)} = 1.3694 \text{ rad}$$

Peak time:  $t_p = \frac{\pi}{\omega_d} = \frac{\pi}{4.899} = 0.641 \text{ sec}$ 

2% Settling time:  $t_s = \frac{4}{\zeta \omega_n} = \frac{4}{(0.2)(5)} = 4 \sec \frac{1}{(0.2)(5)}$ 

% of overshoot:  $M_p = e^{-\frac{\zeta}{\sqrt{1-\zeta^2}}\pi} = e^{-\frac{0.2}{\sqrt{1-0.2^2}}\pi} = 0.5266 \text{ (or } 52.66\%)$ 

To improve the transient behavior of the system in Question 1, a proportional and derivative controller is added as shown below.



- (a) Determine the value of k such that the resulting system will have a damping ratio of 0.5.
- (b) Obtain the unit-step response c(t) of this system when all initial conditions are zero.

Ans: (a) 
$$k = 0.12$$
; (b)  $c(t) = 1 + 0.693e^{-2.5t} \sin 4.33t - 1.15e^{-2.5t} \sin (4.33t + 1.047)$ 

Solution

(a) The closed-loop transfer function of the system,

$$\frac{C(s)}{R(s)} = \frac{(1+ks)\frac{25}{s(s+2)}}{1+(1+ks)\frac{25}{s(s+2)}} = \frac{25(1+ks)}{s(s+2)+25(1+ks)} = \frac{25(1+ks)}{s^2+(2+25k)s+25}$$

Equating the terms with the 2<sup>nd</sup> order equation, we have

$$\omega_n^2 = 25 \Rightarrow \omega_n = 5 \text{ rad/s}$$

$$2\zeta\omega_n = 2 + 25k \Rightarrow (2)(0.5)(5) = 2 + 25k \Rightarrow k = 0.12$$

(b) The unit-step response of the system,

$$C(s) = \left(\frac{25(1+0.12s)}{s^2 + \left(2 + 25(0.12)\right)s + 25}\right) \left(\frac{1}{s}\right) = \left(\frac{3s + 25}{s^2 + 5s + 25}\right) \left(\frac{1}{s}\right)$$

Rearrange the above equation, we have

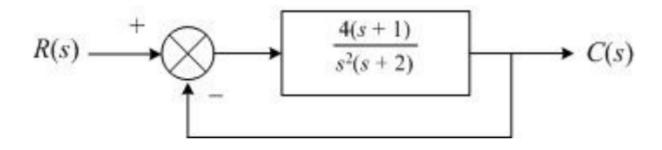
$$C(s) = \frac{3s + 25}{s(s^2 + 5s + 25)} = \frac{3s}{s(s^2 + 5s + 25)} + \frac{25}{s(s^2 + 5s + 25)}$$
$$= \frac{3}{25} \frac{25}{s^2 + 5s + 25} + \frac{25}{s(s^2 + 5s + 25)}$$

Taking inverse Laplace transform, we have

$$c(t) = \left(\frac{3}{25}\right) \left(\frac{5}{\sqrt{1 - 0.5^2}} e^{-(0.5)(5)t} \sin\left(5\sqrt{1 - 0.5^2}t\right)\right) + 1$$
$$-\frac{1}{\sqrt{1 - 0.5^2}} e^{-(0.5)(5)t} \sin\left(5\sqrt{1 - 0.5^2}t + \phi\right), \phi = \cos^{-1} 0.5$$

$$c(t) = 1 + 0.693e^{-2.5t}\sin 4.33t - 1.15e^{-2.5t}\sin(4.33t + 1.047)$$

Given the following unity feedback system.



- (a) Find the position, velocity, and acceleration error constants.
- (b) Determine the steady-state error when the input is  $R(s) = \frac{3}{s} \frac{1}{s^2} + \frac{1}{2s^3}$ .

Ans: (a) 
$$K_p = \infty$$
,  $K_v = \infty$ ,  $K_a = 2$ ; (b)  $e_{\infty} = 0.25$ 

Position error constant: 
$$K_p = \lim_{s \to 0} G(s)H(s) = \lim_{s \to 0} \frac{4(s+1)}{s^2(s+2)} = \frac{4}{0} = \infty$$

Velocity error constant: 
$$K_v = \lim_{s \to 0} sG(s)H(s) = \lim_{s \to 0} s\frac{4(s+1)}{s^2(s+2)} = \frac{4}{0} = \infty$$

Acceleration error constant: 
$$K_a = \lim_{s \to 0} s^2 G(s) H(s) = \lim_{s \to 0} s^2 \frac{4(s+1)}{s^2(s+2)} = \frac{4}{2} = 2$$

(b) State-error (Position): 
$$e_{p,ss}(\infty) = \frac{1}{1 + K_p} = \frac{1}{1 + \infty} = 0$$

State-error (Velocity): 
$$e_{v,ss}(\infty) = \frac{1}{K_v} = \frac{1}{\infty} = 0$$

State-error (Acceleration): 
$$e_{a,ss}(\infty) = \frac{1}{K_a} = \frac{1}{2} = 0.5$$

The input signal, R(s), consists of 3 elements, step  $\left(\frac{3}{s}\right)$  + ramp  $\left(\frac{1}{s^2}\right)$  + parabolic  $\left(\frac{1}{2s^3}\right)$  inputs, because the system is LTI, the principle of superposition holds, so the steady-state error will be equal to,

$$e_{ss}(\infty) = 3e_{p,ss}(\infty) - e_{v,ss}(\infty) + \frac{1}{2}e_{a,ss}(\infty) = 3(0) - 0 + \frac{1}{2}(0.5) = 0.25$$