Given the following characteristic equations, determine the system stability

(a)
$$\Delta(s) = s^3 + 4s^2 + 8s + 12 = 0$$

(b)
$$\Delta(s) = 2s^3 + 4s^2 + 4s + 12 = 0$$

Ans: (a) Stable; (b) Unstable

Solution

Since there is no sign change on the 1st column of the Routh's array, the system is **Stable.**

(b) The Routh's array,

$$\begin{array}{c|cccc}
s^3 & 2 & 4 & 4 \\
s^2 & 4 & 12 \\
s^1 & \frac{(4)(4) - (2)(12)}{4} = -2 \\
s^0 & \frac{(-2)(12) - (4)(0)}{-2} = 12
\end{array}$$

Since there are 2 sign changes on the 1st column of the Routh's array, the system is **Unstable.**

Determine the range of K such that the system with the characteristic equation, $\Delta(s) = s^4 + 6s^3 + 11s^2 + 6s + K = 0$, is stable.

Ans: 0 < K < 264

Solution

From the Routh's array,

The system is stable if there is no sign change on the 1st column of the Routh's array. Hence, we have 6 - 0.6K > 0, K < 10 and $K > 0 \Rightarrow 0 < K < 10$.