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Control System Analysis

Unit 6

Control System Method

(Reference: [1] chapter 6.6-6.7, 7.10-7.12, 8.2 )
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Compensators Design

Series Compensation (Unit 5, p.43)

• If a sinusoidal input is applied to the input of a network, and the steady-state output 

(which is also sinusoidal) has a phase lead, then the network is called a lead 

network

• If the steady-state output has a phase lag, then the network is called a lag network

• In a lag–lead network, both phase lag and phase lead occur in the output but in 

different frequency regions

• A compensator having a characteristic of a lead network, lag network, or lag–lead 

network is called a lead compensator, lag compensator, or lag–lead compensator
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Compensators Design

Lead and Lag Compensators 

• There are many ways to realize lead compensators and lag compensators, such as 

electronic networks using operational amplifiers, electrical RC networks, and 

mechanical spring-dashpot systems
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𝐸𝑜(𝑠)

𝐸𝑖(𝑠)
=
𝑅2𝑅4
𝑅1𝑅3

𝑅1𝐶1𝑠 + 1

𝑅2𝐶2𝑠 + 1
=
𝑅4𝐶1
𝑅3𝐶2

𝑠 +
1

𝑅1𝐶1

𝑠 +
1

𝑅2𝐶2

= 𝐾𝑐𝛼
𝑇𝑠 + 1

𝛼𝑇𝑠 + 1
= 𝐾𝑐

𝑠 +
1
𝑇

𝑠 +
1
𝛼𝑇

∴ 𝛼 =
𝑅2𝐶2
𝑅1𝐶1

If 𝑅1𝐶1 > 𝑅2𝐶2 (0 < 𝛼 < 1)

It is a lead-network

If 𝑅1𝐶1 < 𝑅2𝐶2

It is a lag-network



Series Lead Compensator Design by Root Locus 

• When the specifications are given in terms of time-domain quantities, such as the 

damping ratio and undamped natural frequency of the desired dominant closed-loop 

poles, maximum overshoot, rise time, and settling time

• Consider a design problem in which the original system either is unstable for all 

values of gain or is stable but has undesirable transient-response characteristics

• In such a case, the reshaping of the root locus is necessary in the broad 

neighborhood of the 𝑗𝜔 axis and the origin in order that the dominant closed-loop 

poles be at desired locations in the complex plane
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Series Lead Compensator Design by Root Locus 

Procedures for designing a series lead compensator by the root locus approach

1. From the performance specifications, determine the desired location for the dominant 

closed-loop poles

2. Drawing the root-locus plot of the uncompensated system (original system),  calculate the 

angle deficiency 𝜙 contributed by the lead compensator

3. Assume the lead compensator 𝐺𝑐(𝑠) to be 

where 𝛼 and T are determined from the angle deficiency.  𝐾𝑐 is determined from the 

requirement of the open-loop grain

4. If static error constants are not specified, determine the location of the pole and zero of 

the lead compensator so that the lead compensator will contribute the necessary angle 𝜙

5. Determine the value of 𝐾𝑐 of the lead compensator from the magnitude condition
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𝐺𝑐(𝑠) = 𝐾𝑐𝛼
𝑇𝑠 + 1

𝛼𝑇𝑠 + 1
= 𝐾𝑐

𝑠 +
1
𝑇

𝑠 +
1
𝛼𝑇

(0 < 𝛼 < 1)



Given the feedforward transfer function 

𝐺 𝑠 =
10

𝑠 𝑠 + 1
.

Design a series lead compensator so that the dominant closed-loop poles have the damping 

ratio, 𝜁 = 0.5, and the undamped natural frequency, 𝜔𝑛 = 3 rad/s.

Answer:

1. Determine the desired closed-loop dominant poles location

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 = 𝑠2 + 3𝑠 + 9

𝑠 = −1.5 ± 𝑗2.5981
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Example 1



Answer:

2. The root locus of the uncompensated system 

and find the angle of deficiency

Closed-loop poles: 𝑠 = −0.5 ± 𝑗3.1225

Open-loop poles: 𝑠 = 0,−1
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Example 1 (continued)

𝐶(𝑠)

𝑅(𝑠)
=

10
𝑠(𝑠 + 1)

1 +
10

𝑠(𝑠 + 1)

=
10

𝑠2 + 𝑠 + 10

𝜃2 = 180° − tan−1
2.5981

1.5 − 1
= 100.89°

𝜃1 = 180° − tan−1
2.5981

1.5
= 120°

Angle from s = 0 to desired pole location:

Angle from s = −1 to desired pole location:

Angel of deficiency (𝜙) = 180° − 120° −
100.89° = −40.894°



Answer:

3. Determine the pole and zero of the compensator

a) Draw a horizontal line (PA) passing through point P, the desired location for one of 

the dominant closed-loop poles

b) Draw a line connecting point P and the origin. Bisect the angle ∠𝐴𝑃𝑂 with a line 

PB

c) Draw two lines PC and PD that make angles with the bisector PB

d) The intersections of PC and PD with the negative real axis give the necessary 

locations for the pole and zero of the lead network

9

Example 1 (continued)

𝐺𝑐(𝑠) = 𝐾𝑐𝛼
𝑇𝑠 + 1

𝛼𝑇𝑠 + 1
= 𝐾𝑐

𝑠 +
1
𝑇

𝑠 +
1
𝛼𝑇

(0 < 𝛼 < 1)



Answer:

3. Determine the pole and zero of the compensator

If we bisect angle ∠ 𝐴𝑃𝑂 and take 40.894°/2 each side, then the locations of the zero 

and pole are found as follows:

Zero at s = −1.9432    and Pole at s = −4.6458

Thus, 
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Example 1 (continued)

𝐺𝑐 𝑠 = 𝐾𝑐
𝑠 +

1
𝑇

𝑠 +
1
𝛼𝑇

= 𝐾𝑐
𝑠 + 1.9432

𝑠 + 4.6458

1
𝑇
1
𝛼𝑇

= 𝛼 =
1.9432

4.6458
= 0.418



Answer:

4. The question did not have static error constants requirement

5. Determine the value of 𝐾𝑐 of the lead compensator from the magnitude condition

Hence, the series lead compensator is given by,
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Example 1 (continued)

𝐺𝑐 𝑠 𝐺(𝑠) 𝑠=−1.5+𝑗2.891 = 1

𝐾𝑐
𝑠 + 1.9432

𝑠 + 4.6458
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𝑠(𝑠 + 1)
𝑠=−1.5+𝑗2.5891

= 1

𝐾𝑐 =
𝑠 + 4.6458 𝑠(𝑠 + 1)

10(𝑠 + 1.9432)
𝑠=−1.5+𝑗2.5891

= 1.224

𝐺𝑐 𝑠 = 1.224
𝑠 + 1.9432

𝑠 + 4.6458



Compensators Design

Lead and Lag Compensators 

• The configuration of the electronic lag compensator using operational amplifiers is 

the same as that for the lead compensator (p. 4)

12

𝐸𝑜(𝑠)

𝐸𝑖(𝑠)
=
𝑅2𝑅4
𝑅1𝑅3

𝑅1𝐶1𝑠 + 1

𝑅2𝐶2𝑠 + 1
=
𝑅4𝐶1
𝑅3𝐶2

𝑠 +
1

𝑅1𝐶1

𝑠 +
1

𝑅2𝐶2

= 𝐾𝑐𝛽
𝑇𝑠 + 1

𝛽𝑇𝑠 + 1
= 𝐾𝑐

𝑠 +
1
𝑇

𝑠 +
1
𝛽𝑇

∴ 𝛽 =
𝑅2𝐶2
𝑅1𝐶1

> 1

If 𝑅1𝐶1 < 𝑅2𝐶2

It is a lag-network

Note that we use 𝛽 instead of 𝛼 in the above expressions and we always assume that 

0 < 𝛼 < 1 and 𝛽 > 1.



Series Lag Compensator Design by Root Locus 

• The system exhibits satisfactory transient-response characteristics but 

unsatisfactory steady-state characteristics

• Compensation in this case essentially consists of increasing the open-loop 

gain without appreciably changing the transient-response characteristics

• This means that the root locus should not be changed appreciably

• This can be accomplished if a lag compensator is put in cascade with the 

given feedforward transfer function

• To avoid an appreciable change in the root loci, the angle contribution of 

the lag network should be limited to a small amount, say less than 5°

• Place the pole and zero of the lag network relatively close together and near 

the origin of the s-plane. Hence,
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𝐺𝑐(𝑠) = 𝐾𝑐
𝑠1 +

1
𝑇

𝑠1 +
1
𝛽𝑇

≈ 𝐾𝑐

𝑠1 is one of the dominant closed-loop poles



Series Lag Compensator Design by Root Locus 
Procedures for designing a series lag compensator by the root locus approach

1. From the performance specifications, determine the desired location for the dominant 
closed-loop poles. Drawing the root-locus plot of the uncompensated system (original 
system)

2. Assume the lag compensator 𝐺𝑐(𝑠) to be 

Then, the open-loop transfer function becomes 𝐺𝑐 𝑠 𝐺(𝑠)

3. Evaluate the particular static error constant specified in the problem

4. Determine the amount of increase in the static error constant necessary to satisfy the 
specifications

5. Determine the pole and zero of the lag compensator that produce the necessary increase 
in the particular static error constant without appreciably altering the original root loci

6. Draw a new root-locus plot for the compensated system. Locate the desired dominant 
closed-loop poles on the root locus

7. Adjust gain 𝐾𝑐 of the compensator from the magnitude condition so that the dominant 
closed-loop poles lie at the desired location (𝐾𝑐 will be approximately 1)
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𝐺𝑐(𝑠) = 𝐾𝑐𝛽
𝑇𝑠 + 1

𝛽𝑇𝑠 + 1
= 𝐾𝑐

𝑠 +
1
𝑇

𝑠 +
1
𝛽𝑇



Given the feedforward transfer function 

𝐺 𝑠 =
1.06

𝑠 𝑠 + 1 (𝑠 + 2)
.

Design a series lag compensator so that the static velocity error constant, 𝐾𝑣,  is 5 sec−1.

Answer:

1. Determine the dominant closed-loop poles location

2. Draw the root locus plot
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Example 2

𝐶(𝑠)

𝑅(𝑠)
=

1.06
𝑠 𝑠 + 1 (𝑠 + 2)

1 +
1.06

𝑠 𝑠 + 1 (𝑠 + 2)

=
1.06

𝑠 𝑠 + 1 𝑠 + 2 + 1.06

Dominant closed-loop poles: 𝑠 = −0.3307 ± 𝑗0.5864



Answer:

4. Evaluate the particular static error constant specified in the problem

5. Determine the amount of increase in the static error constant necessary to satisfy the 

specifications
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Example 2 (continued)

∴ 𝛽 = 9.4340 ≈ 10 if 𝐾𝑐 ≈ 1

𝐾𝑣 = lim
𝑠→0

𝑠𝐺 𝑠 = lim
𝑠→0

𝑠
1.06

𝑠(𝑠 + 1)(𝑠 + 2)
= 0.53 sec−1

𝐾𝑣, 𝑛𝑒𝑤 = 5 = lim
𝑠→0

𝑠𝐺𝑐𝐺 𝑠 = lim
𝑠→0

𝐺𝑐(𝑠) lim
𝑠→0

𝑠𝐺(𝑠) = 0.53 lim
𝑠→0

𝐺𝑐(𝑠) ≈ 0.53𝐾𝑐𝛽

𝐺𝑐(𝑠) = 𝐾𝑐𝛽
𝑇𝑠 + 1

𝛽𝑇𝑠 + 1
= 𝐾𝑐

𝑠 +
1
𝑇

𝑠 +
1
𝛽𝑇

To increase the static velocity error constant by a factor of about 10, let us choose 

𝛽 = 10



Answer:

6. Determine the pole and zero of the lag compensator

Select s values for the pole and zero of the lag compensator which results a small 
amount of phase lag

Select T = 10

Zero of the lag compensator is at s = −0.1

Pole of the lag compensator is at s = −0.01

Hence, the angle contribution of lag compensator is ȁ∠𝐺𝑐(𝑠) 𝑠=−0.3307+𝑗0.5864 = −7.19°

Select T = 20

Zero of the lag compensator is at s = −0.05

Pole of the lag compensator is at s = −0.005

Hence, the angle contribution of lag compensator is ȁ∠𝐺𝑐(𝑠) 𝑠=−0.3307+𝑗0.5864 = −3.47°
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Example 2 (continued)

𝜃𝑧𝑒𝑟𝑜 = 180° − tan−1
0.5864

0.3307 − 0.1
= 111.48°

Desired closed-loop pole location (𝑠 = −0.3307 + 𝑗0.5864)

𝐺𝑐(𝑠) = 𝐾𝑐𝛽
𝑇𝑠 + 1

𝛽𝑇𝑠 + 1
= 𝐾𝑐

𝑠 +
1
𝑇

𝑠 +
1
𝛽𝑇

𝜃𝑝𝑜𝑙𝑒 = 180° − tan−1
0.5864

0.3307 − 0.01
= 118.67°

𝜃𝑧𝑒𝑟𝑜 = 180° − tan−1
0.5864

0.3307 − 0.05
= 115.58°

𝜃𝑝𝑜𝑙𝑒 = 180° − tan−1
0.5864

0.3307 − 0.005
= 119.05°



Answer:

Hence, the transfer function of the lag compensator will be given by

7. Adjust gain 𝐾𝑐 of the compensator from the magnitude condition
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Example 2 (continued)

𝐺𝑐(𝑠) = 𝐾𝑐𝛽
𝑇𝑠 + 1

𝛽𝑇𝑠 + 1
= 𝐾𝑐

𝑠 +
1
𝑇

𝑠 +
1
𝛽𝑇

𝐺𝑐(𝑠) =
𝑠 + 0.05

𝑠 + 0.005

If the damping ratio of the new dominant closed-loop 

poles is kept the same, then these poles are obtained 

from the new root-locus plot as follows

𝑠 = −0.31 ± 𝑗0.55

𝐾𝑐 =
𝑠 + 0.005 𝑠(𝑠 + 1)(𝑠 + 2)

1.06(𝑠 + 0.05)
𝑠=−0.31+𝑗0.55

= 0.9656

𝐺𝑐(𝑠) = 0.9656
𝑠 + 0.05

𝑠 + 0.005



Compensator Design by Frequency Response

• In the frequency-response approach, the specifications of transient-response 

performance in an indirect manner, that is, in terms of the phase margin, gain margin, 

resonant peak magnitude (they give a rough estimate of the system damping); the 

gain crossover frequency, resonant frequency, bandwidth (they give a rough estimate 

of the speed of transient response); and static error constants (they give the steady-

state accuracy). 

• The frequency-response approach can be applied to systems or components whose 

dynamic characteristics are given in the form of frequency-response data

• Two approaches in the frequency-domain design: Polar Plot approach and Bode 

Diagram approach

Common Approach

• Adjust the open-loop gain so that the requirement on the steady-state accuracy is met

• Then, the magnitude and phase curves of the uncompensated open loop (with the 

open-loop gain just adjusted) are plotted

• If the specifications on the phase margin and gain margin are not satisfied, then a 

suitable compensator that will reshape the open-loop transfer function is determined
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Series Lead Compensator Design by Frequency Response

Characteristics of Lead Compensators

• Consider a lead compensator having the following transfer function:

where 𝛼 is the attenuation factor of the lead compensator

• It has a zero at 𝑠 = −1/𝑇 and a pole at 𝑠 = −1/𝛼𝑇. Since 0 < 𝛼 < 1, we see that 

the zero is always located to the right of the pole in the complex plane

• Polar plot of the compensator (with 𝐾𝑐 =1 ),
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𝐺𝑐(𝑠) = 𝐾𝑐𝛼
𝑇𝑠 + 1

𝛼𝑇𝑠 + 1
= 𝐾𝑐

𝑠 +
1
𝑇

𝑠 +
1
𝛼𝑇

(0 < 𝛼 < 1)

𝐺𝑐 𝑗𝜔 = 𝐾𝑐𝛼
𝑗𝜔𝑇 + 1

𝑗𝛼𝜔𝑇 + 1

sin𝜙𝑚 =
1 − 𝛼

1 + 𝛼

Maximum phase-lead angle, 𝜙𝑚



Series Lead Compensator Design by Frequency Response

Characteristics of Lead Compensators

• Bode diagram of a lead compensator when 𝐾𝑐 = 1 and 𝛼 = 0.1

• The corner frequencies for the lead compensator are 𝜔 = 1/𝑇 and 𝜔 = 1/𝛼𝑇 = 10/𝑇

• Lead compensator is basically a high-pass filter
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log𝜔𝑚 =
1

2
log

1

𝑇
+ log

1

𝛼𝑇

log𝜔𝑚 = log
1

𝑇

1

𝛼𝑇

∴ 𝜔𝑚 =
1

𝛼𝑇



Series Lead Compensator Design by Frequency Response

Procedure for designing a series lead compensator

1. Assume the following lead compensator,

The open-loop transfer function of the compensated system is

Determine gain 𝐾(= 𝐾𝑐𝛼) to satisfy the requirement of the given static error 

constant
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𝐺𝑐(𝑠) = 𝐾𝑐𝛼
𝑇𝑠 + 1

𝛼𝑇𝑠 + 1
= 𝐾𝑐

𝑠 +
1
𝑇

𝑠 +
1
𝛼𝑇

(0 < 𝛼 < 1)

𝐺𝑐 𝑠 𝐺 𝑠 = 𝐾
𝑇𝑠 + 1

𝛼𝑇𝑠 + 1
𝐺 𝑠 =

𝑇𝑠 + 1

𝛼𝑇𝑠 + 1
𝐾𝐺 𝑠 =

𝑇𝑠 + 1

𝛼𝑇𝑠 + 1
𝐺1(𝑠)



Series Lead Compensator Design by Frequency Response

Procedure for designing a series lead compensator

2. Using the gain K thus determined, draw a Bode diagram of 𝐺1(𝑗𝜔), the gain 

adjusted but uncompensated system.  Evaluate the phase margin.

3. Determine the necessary phase-lead angle to be added to the system. Add an 

additional 5° to 12° to the phase-lead angle required, because the addition of the 

lead compensator shifts the gain crossover frequency to the right and decreases the 

phase margin

4. Determine the attenuation factor 𝛼 by use sin𝜙𝑚 =
1−𝛼

1+𝛼
. Determine the frequency 

where the magnitude of the uncompensated system 𝐺1(𝑗𝜔) is equal to 

− 20 log
1

𝛼
. Select this frequency as the new gain crossover frequency.  This 

frequency corresponds to 𝜔𝑚 =
1

𝛼𝑇
, and the maximum phase shift  𝜙𝑚 occurs at 

this frequency
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Series Lead Compensator Design by Frequency Response

Procedure for designing a series lead compensator

5. Determine the corner frequencies of the lead compensator as follows

Zero of lead compensator:

Pole of lead compensator:

6. Using the value of K determined in step 1 and that of 𝛼 determined in step 4, 

calculate constant 𝐾𝑐 (= 𝐾/𝛼) 

7. Check the gain margin to be sure it is satisfactory. If not, repeat the design process 

by modifying the pole–zero location of the compensator until a satisfactory result 

is obtained.
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𝜔 =
1

𝑇

𝜔 =
1

𝛼𝑇



The open-loop transfer function of a unity feedback system is,

𝐺 𝑠 =
4

𝑠 𝑠 + 2
.

It is desired to design a series lead compensator for the system so that the static velocity 

error constant Kv is 20 sec–1, the phase margin is at least 50°, and the gain margin is at least 

10 dB.

Answer:

1. The transfer function of a series lead compensator,

The compensated system will have the open-loop transfer function 𝐺𝑐 𝑠 𝐺 𝑠 ,
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Example 3

𝐺𝑐(𝑠) = 𝐾𝑐𝛼
𝑇𝑠 + 1

𝛼𝑇𝑠 + 1
= 𝐾𝑐

𝑠 +
1
𝑇

𝑠 +
1
𝛼𝑇

𝐺1 𝑠 = 𝐾𝐺 𝑠 =
4𝐾

𝑠(𝑠 + 2)𝐺𝑐 𝑠 𝐺 𝑠 = 𝐾𝑐𝛼
𝑇𝑠 + 1

𝛼𝑇𝑠 + 1

4

𝑠(𝑠 + 2)
Define

𝐾 = 𝐾𝑐𝛼



Answer:

1. Determine gain 𝐾(= 𝐾𝑐𝛼) to satisfy the requirement of the given static velocity error 

constant

2. Using this gain K, draw a Bode diagram of 𝐺1(𝑗𝜔), the gain adjusted but 

uncompensated system.  
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Example 3 (continued)

𝐾𝑣 = lim
𝑠→0

𝑠 𝐺𝑐 𝑠 𝐺 𝑠 = lim
𝑠→0

𝑠
𝑇𝑠 + 1

𝛼𝑇𝑠 + 1

4𝐾

𝑠(𝑠 + 2)
= 2𝐾 = 20 ⇒ 𝐾 = 10

𝐺1(𝑗𝜔) =
4𝐾

𝑗𝜔(𝑗𝜔 + 2)

𝝎 (rad/s) 𝑮𝟏 (dB) ∠𝑮𝟏() 𝝎 (rad/s) 𝑮𝟏 (dB) ∠𝑮𝟏()

0.1 46 -92.86 5 3.44 -158.2

0.2 39.96 -95.71 10 -8.11 -168.69

0.5 31.78 -104.04 20 -20.04 -174.29

1 25.05 -116.57 25 -23.90 -175.43

2 16.99 -135 30 -27.06 -176.19



Answer:

2. Evaluate the phase margin.
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Example 3 (continued)

From the Bode plot, the phase and gain margins of the system are found to be 18.2 and 

+∞ dB, respectively



Answer:

3. Determine the necessary phase-lead angle to be added to the system

From the question, it requires a  phase margin of at least 50

Thus, the additional phase lead necessary to satisfy the relative stability requirement is 

31.8 (50 − 18.2) without decreasing the value of K, the lead compensator must 

contribute the required phase angle

4. Determine the attenuation factor 𝛼 and the new gain crossover frequency

The maximum phase lead required is then 𝜙𝜙𝑚 = 31.8° + 5° = 36.8°
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Example 3 (continued)

sin𝜙𝑚 =
1 − 𝛼

1 + 𝛼
⇒ 𝛼 =

1 − sin𝜙𝑚
1 + sin𝜙𝑚

=
1 − sin 36.8°

1 + sin 36.8°
= 0.251



Answer:

4. Determine the attenuation factor 𝛼 and the new gain crossover frequency

The new gain crossover frequency,

The amount of modification in the magnitude curve at 𝜔 =
1

𝛼𝑇
due to the inclusion of 

𝐺𝑐 𝑗𝜔 ,
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Example 3 (continued)

𝜔𝑚 =
1

𝛼𝑇

1 + 𝑗𝜔𝑇

1 + 𝑗𝛼𝜔𝑇
𝜔=

1
𝛼𝑇

=

1 + 𝑗𝑇
1
𝛼𝑇

1 + 𝑗𝑇𝛼
1
𝛼𝑇

=
1

𝛼

𝐺1 𝑗𝜔 = −20 log
1

𝛼
= −20 log

1

0.251
= −6.00 dB

Refer to the Bode diagrams (in Step 2), it corresponds to 𝜔 =8.8 rad/s (This is the 

new gain crossover frequency 𝜔𝐶)



Answer:

4. Determine the attenuation factor 𝛼 and the new gain crossover frequency

30

Example 3 (continued)

Refer to the Bode diagrams (in Step 2), it corresponds to 𝜔 = 8.8 rad/s (This is the 

new gain crossover frequency 𝜔𝐶)



Answer:

5. Determine the corner frequencies of the lead compensator

Zero of lead compensator:

Pole of lead compensator:

The series lead compensator is,

With 𝐾 = 𝐾𝑐𝛼, 𝐾𝑐 =
10

0.251
= 39.84. Thus, the transfer function of the compensator is,
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Example 3 (continued)

𝜔𝑚 = 8.8 rad/s

𝜔𝐶 =
1

𝑇

𝜔𝐶 =
1

𝛼𝑇

𝛼 = 0.251

𝜔𝑚 =
1

𝛼𝑇
⇒

1

𝑇
= 𝜔𝑚 𝛼 = 8.8 0.251 = 4.41

𝜔𝑚 =
1

𝛼𝑇
⇒

1

𝛼𝑇
=
𝜔𝑚 𝛼

𝛼
=
8.8 0.251

0.251
= 17.56

𝐺𝑐(𝑠) = 𝐾𝑐
𝑠 + 4.41

𝑠 + 17.56

𝐺𝑐 𝑠 = 39.84
𝑠 + 4.41

𝑠 + 17.56



Series Lag Compensator Design by Frequency Response

Characteristics of Lag Compensators

• Consider a lag compensator having the following transfer function:

• It has a zero at 𝑠 = −1/𝑇 and a pole at 𝑠 = −1/𝛽𝑇.

• Polar plot and Bode diagrams of the compensator (with 𝐾𝑐 =1, 𝛽 = 10),

• The lag compensator is essentially a low-pass filter

32

𝐺𝑐(𝑠) = 𝐾𝑐𝛽
𝑇𝑠 + 1

𝛽𝑇𝑠 + 1
= 𝐾𝑐

𝑠 +
1
𝑇

𝑠 +
1
𝛽𝑇

(𝛽 > 1)



Series Lag Compensator Design by Frequency Response

Procedure for designing a series lag compensator

1. Assume the following lead compensator,

The open-loop transfer function of the compensated system is

Determine gain 𝐾(= 𝐾𝑐𝛽) to satisfy the requirement of the given static error 

constant
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𝐺𝑐 𝑠 𝐺 𝑠 = 𝐾
𝑇𝑠 + 1

𝛽𝑇𝑠 + 1
𝐺 𝑠 =

𝑇𝑠 + 1

𝛽𝑇𝑠 + 1
𝐾𝐺 𝑠 =

𝑇𝑠 + 1

𝛽𝑇𝑠 + 1
𝐺1(𝑠)

𝐺𝑐(𝑠) = 𝐾𝑐𝛽
𝑇𝑠 + 1

𝛽𝑇𝑠 + 1
= 𝐾𝑐

𝑠 +
1
𝑇

𝑠 +
1
𝛽𝑇

(𝛽 > 1)



Series Lag Compensator Design by Frequency Response

Procedure for designing a series lag compensator

2. Using the gain K thus determined, draw a Bode diagram of 𝐺1(𝑗𝜔), the gain 

adjusted but uncompensated system.  Evaluate the phase margin.

3. Determine the necessary phase-lag angle to be added to the system. Add an 

additional 5° to 12° to compensate for the phase lag of the lag compensator.  

Choose this frequency as the new gain crossover frequency

4. To prevent detrimental effects of phase lag due to the lag compensator, the pole and 

zero of the lag compensator must be located substantially lower than the new gain 

crossover frequency.  Choose the corner frequency 𝜔 = 1/𝑇 (corresponding to the 

zero of the lag compensator) 1 octave to 1 decade below the new gain crossover 

frequency.
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𝜙 = −180° + phase margin in specs + (5° ~ 12°)



Series Lag Compensator Design by Frequency Response

Procedure for designing a series lead compensator

5. Determine the attenuation necessary to bring the magnitude curve down to 0 dB at 

the new gain crossover frequency.  Hence 20 log𝛽, determine the value of 𝛽.  

Then the other corner frequency (corresponding to the pole of the lag compensator) 

is determined from 1/(𝛽𝑇).

6. Using the value of K determined in step 1 and that of 𝛽 determined in step 5, 

calculate constant 𝐾𝑐 (= 𝐾/𝛽) 
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The open-loop transfer function of a unity feedback system is,

𝐺 𝑠 =
1

𝑠 𝑠 + 1 0.5𝑠 + 1
.

It is desired to design a series lag compensator for the system so that the static velocity error 

constant Kv is 5 sec–1, the phase margin is at least 40°, and the gain margin is at least 10 dB.

Answer:

1. The transfer function of a series lag compensator,

The compensated system will have the open-loop transfer function 𝐺𝑐 𝑠 𝐺 𝑠 ,

36

Example 4

𝐺𝑐(𝑠) = 𝐾𝑐𝛽
𝑇𝑠 + 1

𝛽𝑇𝑠 + 1
= 𝐾𝑐

𝑠 +
1
𝑇

𝑠 +
1
𝛽𝑇

𝐺1 𝑠 = 𝐾𝐺 𝑠 =
𝐾

𝑠 𝑠 + 1 0.5𝑠 + 1

𝐺𝑐 𝑠 𝐺 𝑠 = 𝐾𝑐𝛽
𝑇𝑠 + 1

𝛽𝑇𝑠 + 1

1

𝑠 𝑠 + 1 0.5𝑠 + 1

Define

𝐾 = 𝐾𝑐𝛽



Answer:

1. Determine gain 𝐾(= 𝐾𝑐𝛽) to satisfy the requirement of the given static velocity error 

constant

2. Using K = 5, draw a Bode diagram of 𝐺1(𝑗𝜔), the gain adjusted but uncompensated 

system.  
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Example 4 (continued)

𝐾𝑣 = lim
𝑠→0

𝑠 𝐺𝑐 𝑠 𝐺 𝑠 = lim
𝑠→0

𝑠
𝑇𝑠 + 1

𝛽𝑇𝑠 + 1

𝐾

𝑠 𝑠 + 1 0.5𝑠 + 1
= 𝐾 = 5

𝐺1(𝑗𝜔) =
5

𝑗𝜔 𝑗𝜔 + 1 0.5𝑗𝜔 + 1

𝝎 (rad/s) 𝑮𝟏 (dB) ∠𝑮𝟏() 𝝎 (rad/s) 𝑮𝟏 (dB) ∠𝑮𝟏()

0.1 33.93 -98.57 8 -34.52 -248.84

0.2 27.75 -107.02 10 -40.21 -252.98

0.6 16.71 -137.06 15 -50.66 -258.59

1 10 -161.57 20 -58.12 -261.43

2 -2.04 -198.43 30 -68.65 -264.28

6 -27.27 -242.10 40 -76.14 -265.71



Answer:

2. Evaluate the phase margin.
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Example 4 (continued)

From the Bode plot, the phase margin = −12 which means that the gain-adjusted but 

uncompensated system is unstable.



Answer:

3. Determine the necessary phase-lag angle to be added to the system
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Example 4 (continued)

𝜙 = −180° + phase margin in specs + 5° ~ 12°

𝜙 = −180° + 40° + 12° = −128°

The new gain crossover 

frequency (of the 

compensated system) = 

0.47 rad/s



Answer:

4. Locate the pole and zero of the lag compensator

Generally chosen the frequency that is one-tenth of the new gain crossover frequency as 

the location of zero, 𝜔 = 1/𝑇 , of the lag compensator

Hence, we have the zero of the lag compensator = 0.047 rad/s.  

5. Determine the attenuation necessary to bring the magnitude curve down to 0 dB at the 

new gain crossover frequency (from the Bode diagram)
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Example 4 (continued)

𝐺𝑐 𝑗𝜔 = 20 log𝛽 = 𝟐𝟎 ⇒ 𝛽 = 10



Answer:

5. Determine the attenuation necessary to bring the magnitude curve down to 0 dB at the 

new gain crossover frequency (from the Bode diagram)
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Example 4 (continued)

𝐺𝑐 𝑗𝜔 = 20 log𝛽 = 𝟐𝟎
⇒ 𝛽 = 10



Answer:

6.  The other corner frequency is,

The series lag compensator is,

With 𝐾 = 𝐾𝑐𝛽, 𝐾𝑐 =
5

10
= 0.5. Thus, the transfer function of the compensator is
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Example 4 (continued)

𝜔 =
1

𝛽𝑇
=
0.047

10
= 0.0047 rad/s

𝐺𝑐 𝑠 = 0.5
𝑠 + 0.047

𝑠 + 0.0047



PID Controllers

• PID control of a plant

• If a mathematical model of the plant can be derived, we can apply various design 

techniques for determining parameters of the controller that will meet the transient 

and steady-state specifications of the closed-loop system

• If a mathematical model of a plant is not obtained, then an analytical or 

computational approach to the design of a PID controller is not possible. Then we 

must resort to experimental approaches to the tuning of PID controllers

• The process of selecting the controller parameters to meet given performance 

specifications is known as controller tuning

• Ziegler and Nichols suggested rules for tuning PID controllers (based on 

experimental step responses or based on the value of 𝐾𝑝 that results in marginal 

stability when only proportional control action is used
43



PID Controllers

• However, the resulting system may exhibit a large maximum overshoot in the step 

response, which is unacceptable. 

• Hence, we need series of fine tunings until an acceptable result is obtained

• In fact, the Ziegler–Nichols tuning rules give an educated guess for the parameter 

values and provide a starting point for fine tuning, rather than giving the final 

settings for and in a single shot

Ziegler–Nichols Rules for Tuning PID Controllers

• Based on the transient response characteristics of a given plant

• Such determination of the parameters of PID controllers or tuning of PID 

controllers can be made by engineers on-site by experiments on the plant

• Numerous tuning rules for PID controllers have been proposed since the Ziegler–

Nichols proposal

44



Tuning Rules for PID Controllers

First Method

• Obtain experimentally the response of the plant to a unit-step input

45

• The delay time (L) and time constant (T) are 

determined by drawing a tangent line at the 

inflection point of the S-shaped curve and 

determining the intersections of the tangent 

line with the time axis and line 𝑐 𝑡 = 𝐾

• The transfer function C(s) / U(s) may then 

be approximated by a first-order system 

with time lag as follows: 

𝐶(𝑠)

𝑈(𝑠)
=
𝐾𝑒−𝐿𝑠

𝑇𝑠 + 1



Tuning Rules for PID Controllers

First Method

• Ziegler–Nichols Tuning Rule Based on Step Response of Plant

• Notice that the PID controller tuned by the first method of Ziegler–Nichols 

rules gives
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𝐺𝑐 𝑠 = 𝐾𝑝 1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠 = 1.2

𝑇

𝐿
1 +

1

2𝐿𝑠
+ 0.5𝐿𝑠 = 0.6𝑇

𝑠 +
1
𝐿

2

𝑠



Tuning Rules for PID Controllers

Second Method

• First set 𝑇𝑖 = ∞ and 𝑇𝑑 = 0

• Using the proportional control action only, increase 𝐾𝑝from 0 to a critical value 𝐾𝑐𝑟
at which the output first exhibits sustained oscillations

• Thus, the critical gain 𝐾𝑐𝑟 and the corresponding period 𝑃𝑐𝑟 are experimentally 

determined
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𝐺𝑐 𝑠 = 𝐾𝑝 1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠



Tuning Rules for PID Controllers

Second Method

• Ziegler–Nichols Tuning Rule Based on Critical Gain 𝐾𝑐𝑟 and Critical Period 𝑃𝑐𝑟

• Notice that the PID controller tuned by the second method of Ziegler–Nichols 

rules gives
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𝐺𝑐 𝑠 = 𝐾𝑝 1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠 = 0.6𝐾𝑐𝑟 1 +

1

0.5𝑃𝑐𝑟𝑠
+ 0.125𝑃𝑐𝑟𝑠

= 0.075𝐾𝑐𝑟𝑃𝑐𝑟

𝑠 +
4
𝑃𝑐𝑟

2

𝑠



Tuning Rules for PID Controllers

Second Method

• If the system has a known mathematical model (such as the transfer function), then 

we can use the root-locus method to find the critical gain 𝐾𝑐𝑟 and the frequency of 

the sustained oscillations 𝑃𝑐𝑟, where 2𝜋/𝜔𝑐𝑟= 𝑃𝑐𝑟
• How to obtain such information from root-locus plot?

Comments

• Ziegler–Nichols tuning rules have been widely used to tune PID controllers in 

process control systems where the plant dynamics are not precisely known

• Over many years, such tuning rules proved to be very useful

• Ziegler–Nichols tuning rules can be applied to plants whose dynamics are known 

as well

• If the plant dynamics are known, many analytical and graphical approaches to the 

design of PID controllers are available, in addition to Ziegler–Nichols tuning rules
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