

School of Professional Education and Executive Development 專業造修學院

SEHS4653 Control System Analysis

Unit 5

Frequency Response Analysis (Reference: [1] chapter 7.1 to 7.7)

Content

- Introduction
- Bode Diagram (Exact vs Asymptotic)
- Polar (or Nyquist) Plot
- Log-Magnitude-versus-Phase Plot (Nichols Plot)
- Nyquist Stability Criterion
- Relative Stability Analysis
 - Gain Margin and Phase Margin

Introduction

Frequency Response Approach

- Steady-state response of a system to a sinusoidal input
- Varying the frequency of the input signal over a certain range and study the resulting response
- Use the data obtained from measurements (experimentally) on the physical system without deriving its mathematical model (without the transfer function of the control system)
- Replacing s in the transfer function G(s) by $j\omega$, where ω is the frequency
- Graphical forms: Bode Diagram, Nyquist (Polar) Plot and Nichols Plot

$$u(t) = A\sin(\omega t) \xrightarrow{U(s)} G(s) \text{ or } G(j\omega) \xrightarrow{Y(s)} y(t) = B\sin(\omega t + \phi)$$

$$\psi(t) = B\sin(\omega t + \phi)$$

$$\psi(t) = B\sin(\omega t + \phi)$$

$$\psi(t) = B\sin(\omega t + \phi)$$

Introduction

Frequency Response Approach

- The function $G(j\omega)$ is called the sinusoidal transfer function, which is a complex quantity
- It can be represented by the magnitude and phase angle with frequency as a parameter

$$G(j\omega)| = \left| \frac{Y(j\omega)}{U(j\omega)} \right| =$$
amplitude ratio of the output sinusoid to the input sinusoid

 $\angle G(j\omega) = \angle \frac{Y(j\omega)}{U(j\omega)} =$ phase shift of the output sinusoid with respect to the input sinusoid

5

Example 1

Consider the system shown below, the transfer function G(s) is

Replacing s in the transfer function G(s) by $j\omega$,

$$G(j\omega) = \frac{K}{j\omega T + 1}$$

The amplitude ratio of the output to the input is,

$$G(j\omega)| = \frac{K}{\sqrt{(\omega T)^2 + 1^2}} = \frac{K}{\sqrt{1 + \omega^2 T^2}}$$

While the phase angle ϕ is,

$$\angle G(j\omega) = \tan^{-1}\frac{0}{K} - \tan^{-1}\frac{\omega T}{1} = -\tan^{-1}\omega T$$

Bode Diagram

Overview

- Consists of 2 graphs: logarithm of the magnitude of a sinusoidal transfer function and phase angle
- Both are plotted against the frequency on a logarithmic scale
- The logarithmic magnitude of $G(j\omega)$ is $20 \log_{10} |G(j\omega)| dB$ (decibels)
- The phase angle (or phase shift) is in degrees or radians
- The curves are drawn on semilog paper, using the log scale for frequency and the linear scale for either magnitude or phase angle

Exact Bode Diagram

• Substitute different values of ω (rad/s) into the magnitude and phase angle equations for plotting

Asymptotic Bode Diagram

• Identify basic factors of $G(j\omega)H(j\omega)$ for plotting

Bode Diagram

Basic Factors of $G(j\omega)H(j\omega)$ for plotting Asymptotic Bode Diagram

- Gain *K*
- Integral $\left(\frac{1}{j\omega}\right)$ and derivative $(j\omega)$ factors
- First-order factors, e.g. $(1 + j\omega T)$ and $\left(\frac{1}{1 + j\omega T}\right)$
- Quadratic factors, e.g. $((j\omega)^2 + 2j\omega\zeta\omega_n + \omega_n^2)$ and $(\frac{1}{(j\omega)^2 + 2j\omega\zeta\omega_n + \omega_n^2})$

Bode Diagram (Asymptotic)

The Gain K

- A number greater than unity has a positive value in decibels, while a number smaller than unity has a negative value C(ix) =
- Consider $G(j\omega) = K$, K = constant

Magnitude: $20 \log |G(j\omega)| = 20 \log K$

Phase Angle:
$$\angle G(j\omega) = \tan^{-1}\frac{0}{K} = 0^{\circ}$$

• The effect of varying the gain *K* in the transfer function is that it raises or lowers the log-magnitude curve of the transfer function by the corresponding constant amount, but it has no effect on the phase curve.

School of Professional Education and Executive Development 專素追修學院

Bode Diagram (Asymptotic)

Integral Factor (Pole)

Consider $G(j\omega) = \frac{1}{j\omega}$

Magnitude: $20 \log \left| \frac{1}{j\omega} \right| = 20 \log \left(\frac{1}{\omega} \right)$

$$= 20 \log \omega^{-1} = -20 \log \omega \quad (dB)$$

• The slope of the line is -20 dB / decade

Phase angle: $\angle G(j\omega) = -\tan^{-1}\frac{\omega}{0} = -90^{\circ}$

School of Professional Education and Executive Development 專素追修學院

Bode Diagram (Asymptotic)

Derivative Factor (Zero)

Consider $G(j\omega) = j\omega$

Magnitude: $20 \log |j\omega| = 20 \log \omega$ (dB)

• The slope of the line is +20 dB / decade

Phase angle: $\angle G(j\omega) = \tan^{-1}\frac{\omega}{0} = +90^{\circ}$

Bode Diagram (Asymptotic)

First-Order Factors (Pole)

Consider $G(j\omega) = \frac{1}{1+j\omega T}$ Magnitude: $20 \log|G(j\omega)| = 20 \log \left|\frac{1}{1+j\omega T}\right|$ $= 20 \log \frac{1}{\sqrt{1^2 + (\omega T)^2}} = -20 \log \sqrt{1 + \omega^2 T^2} \text{ (dB)}$

Phase angle: $\angle G(j\omega) = \phi = -\tan^{-1}\omega T$

- At low frequencies, $\omega \ll 1/T$, -20 log $\sqrt{1 + \omega^2 T^2} \approx -20 \log 1 = 0 \text{ dB}$
- At high frequencies, $\omega \gg 1/T$, -20 log $\sqrt{1 + \omega^2 T^2} \approx -20 \log \omega T$ dB

Bode Diagram (Asymptotic)

First-Order Factors (Pole)

The frequency at which the two asymptotes meet is called the corner frequency or break frequency

- Corner frequency for this example: $\omega = 1/T$
- At low frequencies, $\approx -20 \log 1 = 0 \, dB$
- At high frequencies, $\approx -20 \log 10 = -20 \text{ dB}$
- At $\omega = 0$ rad/s, $\phi = 0^{\circ}$
- At $\omega \to \infty$ rad/s, $\phi = -90^{\circ}$

• At
$$\omega = 1/T$$
 rad/s, $\phi = -\tan^{-1}(\frac{1}{T})T = -45^{\circ}$

The error in the magnitude curve caused by the use of asymptotes at corner frequency is,

$$-20\log\sqrt{1+\left(\frac{1}{T}\right)^2 T^2} = -20\log\sqrt{2} = -3.01\,\mathrm{dB}$$

Magnitude: $-20 \log \sqrt{1 + \omega^2 T^2} dB$ Phase: $\angle G(j\omega) = \phi = -\tan^{-1} \omega T$

School of Professional Education and Executive Development 專業追修學院

Bode Diagram (Asymptotic)

First-Order Factors (Zero)

Consider $G(j\omega) = 1 + j\omega T$

The log-magnitude and the phase-angle curves need only be changed in sign of the previous case

Magnitude: $20 \log|G(j\omega)| = 20 \log \sqrt{1^2 + \omega^2 T^2} (dB)$

Phase angle: $\angle G(j\omega) = \phi = \tan^{-1} \omega T$

The corner frequency is the same

Bode Diagram (Asymptotic) Quadratic Factors (Pole)

Consider $G(j\omega) = \frac{1}{(j\omega)^2 + 2j\omega\zeta\omega_n + \omega_n^2}$

$$\therefore G(j\omega) = \frac{1}{1 + 2\zeta \left(j\frac{\omega}{\omega_n}\right) + \left(j\frac{\omega}{\omega_n}\right)^2}$$

- If $\zeta = 1$, this quadratic factor can be expressed as a product of two first-order factors with real poles
- If $0 < \zeta < 1$, this quadratic factor is the product of two complex conjugate factors
- Asymptotic approximations to the frequency-response curves are not accurate for a factor with low values of ζ

Magnitude:
$$20 \log \left| \frac{1}{1 + 2\zeta \left(j \frac{\omega}{\omega_n} \right) + \left(j \frac{\omega}{\omega_n} \right)^2} \right| = -20 \log \sqrt{\left(1 - \frac{\omega^2}{\omega_n^2} \right)^2 + \left(2\zeta \frac{\omega}{\omega_n} \right)^2}$$

At low frequencies such that $\omega \ll \omega_n$, the log-magnitude becomes, $-20 \log 1 = 0 \text{ dB}$ At high frequencies such that $\omega \gg \omega_n$, the log-magnitude becomes,

$$-20\log\frac{\omega^2}{\omega_n^2} = -40\log\frac{\omega}{\omega_n} \, \mathrm{dB}$$
¹⁴

School of Professional Educatio ind Executive Development

Bode Diagram

Quadratic Factors (Pole)

Phase:
$$\phi = -\tan^{-1} \frac{2\zeta \frac{\omega}{\omega_n}}{1 - \left(\frac{\omega}{\omega_n}\right)^2}$$

At $\omega = 0$, the phase angle equals 0°

At the corner frequency $\omega = \omega_n$, the phase angle is -90° regardless of ζ ,

$$\phi = -\tan^{-1}\left(\frac{2\zeta}{0}\right) = -\tan^{-1}\infty = -90^{\circ}$$

At $\omega = \infty$, the phase angle becomes -180°

 $G(j\omega) = -$

(A) Magnitude Plot

Bode Diagram (Asymptotic)

Quadratic Factors (Zero)

Consider
$$G(j\omega) = (j\omega)^2 + 2j\omega\zeta\omega_n + \omega_n^2 = 1 + 2\zeta\left(j\frac{\omega}{\omega_n}\right) + \left(j\frac{\omega}{\omega_n}\right)^2$$

• Similar to the first order factor, merely reversing the sign of the log magnitude and that of the phase angle of the factor

 (ω_n)

Magnitude: =
$$20 \log \sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \left(2\zeta \frac{\omega}{\omega_n}\right)^2}$$

Phase: $\phi = \tan^{-1} \frac{2\zeta \frac{\omega}{\omega_n}}{1 - \left(\frac{\omega}{\omega_n}\right)^2}$

Bode Diagram (Asymptotic)

General Procedure for Plotting Bode Diagrams

- Rewrite the transfer function, $G(j\omega)H(j\omega)$, as a product of the basic factors as discussed before
- Identify the corner frequencies associated with these basic factors
- Draw the asymptotic log-magnitude curves with proper slopes between the corner frequencies
- The phase-angle curve can be drawn by adding the phase-angle curves of individual factors

Advantages

- Much less time than other methods that may be used for computing the frequency response of a transfer function
- The ease of plotting the frequency-response curves for a given transfer function and the ease of modification as compensation is added are the main reasons

Plot the Bode diagram for the transfer function,

$$G(s) = \frac{10}{s+20}$$

Answer:

Step 1: Replacing s by $j\omega$ and rewrite the transfer function as a product of basic factors

$$G(j\omega) = \frac{10}{j\omega + 20} = \frac{\frac{10}{20}}{\frac{j\omega + 20}{20}} = \frac{\frac{1/2}{j\omega}}{\frac{j\omega}{20} + 1}$$

Magnitude of the Gain constant $= 20 \log \left(\frac{1}{2}\right) = -6.01 \text{ dB}$

Step 2: Identify the corner frequencies

Since there is only one first order factor (Pole), the corner frequency is, $\omega = 20$ rad/s

School of Professional Education and Executive Development 專素追修學院

Example 2

Answer:

Step 3: Draw the asymptotic log-magnitude and phase-angle curves for individual basic factors

Step 4: Combine the log-magnitude and phase-angle curves

School of Professional Education and Executive Development 專素追修學院

 $G(j\omega) = \frac{1/2}{\frac{j\omega}{20} + 1}$

Example 2

Answer:

School of Professional Education and Executive Development 專業造修學院

Example 2

Answer:

Exact Bode Diagram from Matlab

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

$G(j\omega) = \frac{10}{j\omega + 20}$
$ G(j\omega) = 20\log\frac{10}{\sqrt{\omega^2 + 20^2}}$
$\angle G(j\omega) = -\tan^{-1}\frac{\omega}{20}$

ω (rad/s)	$ G(j\omega) \\ (dB)$	$\angle G(j\omega)$ (°)
1	-6.03	-2.86
3	-6.12	-8.53
5	-6.28	-14.04
10	-6.99	-26.57
20	-9.03	-45
50	-14.62	-68.2
70	-17.24	-74.05
100	-20.17	-78.69
200	-26.06	-84.29
600	-35.57	-88.09
800	-38.06	-88.57
1000	-40	-88.85

Plot the Bode diagram for the transfer function,

$$G(s) = \frac{100(s+1)}{(s+5)(s+10)}$$

Answer:

Step 1: Replacing s by $j\omega$ and rewrite the transfer function as a product of basic factors

$$G(j\omega) = \frac{100(j\omega+1)}{(j\omega+5)(j\omega+10)} = \frac{100\left(\frac{j\omega+1}{1}\right)}{\left(\frac{j\omega+5}{5}\right)\left(\frac{j\omega+10}{10}\right)} \left(\frac{1}{(5)(10)}\right) = \frac{(2)(1+j\omega)}{\left(1+\frac{j\omega}{5}\right)\left(1+\frac{j\omega}{10}\right)}$$

Step 2: Identify the corner frequencies

Corner frequency is, $\omega = 5$ rad/s for the pole $\left(1 + \frac{j\omega}{5}\right)$ Corner frequency is, $\omega = 10$ rad/s for the pole $\left(1 + \frac{j\omega}{10}\right)$ Corner frequency is, $\omega = 1$ rad/s for the zero $\left(1 + j\omega\right)$ Magnitude of the Gain constant

$$= 20 \log(2) = 6.01 \, \mathrm{dB}$$

School of Professional Education and Executive Development 專業造修學院

Example 3

Answer:

Step 3: Draw the asymptotic log-magnitude and phase-angle curves for individual basic factors

Step 4: Combine the log-magnitude and phase-angle curves

School of Professional Education and Executive Development 專素追修學院

Example 3

Answer:

School of Professional Education and Executive Development 專業造修學院

SPEE

$$e^{G(j\omega) = \frac{100(j\omega + 1)}{(j\omega + 5)(j\omega + 10)}}$$
$$|G(j\omega)| = 20 \log \frac{100\sqrt{\omega^2 + 1^2}}{\sqrt{\omega^2 + 5^2}\sqrt{\omega^2 + 10^2}}$$

Answer:

Exact Bode Diagram from Matlab

-1	1 ω	, ω
$\angle G(j\omega) = \tan^{-1}\omega -$	$\tan^{-1}\frac{1}{5}$ – \tan^{-1}	$\frac{1}{10}$

ω (rad/s)	$ G(j\omega) \\ (dB)$	$\angle G(j\omega)$ (°)
0.1	6.06	3.99
0.5	6.94	17.99
0.8	8.03	25
1	8.82	27.98
3	14.31	23.9
5	16.19	7.13
10	16.06	-24.15
30	9.89	-64.01
50	5.81	-74.13
100	-0.05	-82
500	-13.98	-88.4
1000	-20	-89.2

Polar (or Nyquist) Plot

Overview

- A plot of the magnitude of G(jω) versus the phase angle of G(jω) on polar coordinates as ω is varied from zero to infinity
- Note that in polar plots a positive (negative) phase angle is measured counterclockwise (clockwise) from the positive real axis
- Each point on the polar plot of $G(j\omega)$ represents the terminal point of a vector at a particular value of ω
- It depicts the frequency-response characteristics of a system over the entire frequency range in a single plot

27

Example 4

The polar plot of the transfer function,

$$G(s) = \frac{10}{s(s+1)}$$

Answer:

Replacing *s* into $j\omega$, $G(j\omega) = \frac{10}{j\omega(j\omega+1)}$

Write the expressions for magnitude and phase of $G(j\omega)$ and varies ω from 0 to ∞ .

	ϕ	M	ω rad/s
10	-90°	∞	0
$M = \frac{1}{\omega\sqrt{\omega^2 + 1^2}}$	-116.57°	17.89	0.5
	-135°	7.071	1.0
$\phi = -90^\circ - \tan^{-1} \omega$	-153.43°	2.236	2.0
	-168.69°	0.392	5.0
	-172.87°	0.155	8.0
	-174.29°	0.995	10.0

The polar plot is,

Log-Magnitude-versus-Phase Plot (Nichols Plot)

Overview

- A plot of the logarithmic magnitude in decibels versus the phase angle or phase margin for a frequency range of interest
- The phase margin is the difference between the actual phase angle ϕ and -180° ; that is, $\phi (-180^{\circ}) = 180^{\circ} + \phi$
- It combines the 2 curves, log-magnitude curve and the phase-angle curve, in Bode diagrams
- A change in the gain constant of G(jω) merely shifts the curve up (for increasing gain) or down (for decreasing gain), but the shape of the curve remains the same
- The relative stability of the closed-loop system can be determined quickly and that compensation can be worked out easily

The Nichols plot of the transfer function,

$$G(s) = \frac{10}{s(s+1)}$$

Answer:

Replacing *s* into $j\omega$, $G(j\omega) = \frac{10}{j\omega(j\omega+1)}$

Write the expressions for magnitude and phase of $G(j\omega)$ and varies ω from 0 to ∞ .

10	ϕ	<i>M</i> (<mark>dB</mark>)	ω rad/s
$M = \frac{1}{\omega\sqrt{\omega^2 + 1^2}}$	-90°	∞	0
	-116.57°	25.05	0.5
$= 20 \log 10 - 20 \log \omega$	-135°	16.99	1.0
$-20\log\sqrt{\omega^2+1}$	-153.43°	6.99	2.0
1	-168.69°	-8.13	5.0
$\phi = -90^{\circ} - \tan^{-1}\omega$	-172.87°	-16.19	8.0
30	-174.29°	-20.04	10.0

Answer:

The Nichols plot is,

Log-Magnitude-versus-Phase Plot (Nichols Plot)

Three representations of the frequency response of $\frac{1}{1 + 2\zeta \left(j\frac{\omega}{\omega_n}\right) + \left(j\frac{\omega}{\omega_n}\right)^2}$, for $\zeta > 0$.

(a) Bode diagram; (b) polar plot; (c) log-magnitude-versus-phase plot.

Overview

• The Nyquist stability criterion determines the stability of a closed-loop system from its open-loop frequency response and open-loop poles

- For stability, all roots of the characteristic equation, $\Delta(s) = 1 + G(s)H(s)$ = F(s) must lie in the left-half *s* plane
- The Nyquist stability criterion relates the open-loop frequency response G(jω)H(jω) to the number of zeros and poles of Δ(s) of F(s) that lie in the right-half s plane
- The absolute stability of the closed-loop system can be determined graphically from open-loop frequency-response curves

Stability Analysis of Closed-loop Systems

- Let the closed contour in the *s* plane enclose the entire right-half *s* plane
- This contour consists of the entire $j\omega$ axis from $\omega = -\infty$ to $+\infty$ and a semicircular path of infinite radius in the right-half *s* plane
- The contour encloses all the zeros and poles of F(s) that have positive real parts
- If the function F(s) has poles or zeros at the origin or at some points the $j\omega$ axis, make a detour along an infinitesimal semicircle

Stability Analysis of Closed-loop Systems

• If the closed contour in the *s* plane encloses the entire right-half *s* plane, then

Z = N + P

- Z = Number of right-half *s* plane zeros of F(s)
- P = Number of right-half *s* plane poles of G(s)H(s)
- N = Number of clockwise encirclement of the origin of the F(s)-plane
- A system is stable, we must have Z = 0, or N = -P (having *P* counterclockwise encirclements of the origin)
- The origin of the F(s)-plane is the point (-1 + j0) on the $G(j\omega)H(j\omega)$ plane

Hence, feedback control system is stable if and only if, the number of counterclockwise encirclements of the point (-1 + j0) by the map of the Nyquist contour on the *GH*-plane = number of poles of the G(s)H(s)within the Nyquist contour on the *s* plane.

Practical Approach to Apply the Rule (Z = N + P)

- Determine *P* by inspecting the denominator of the G(s)H(s)
- Determine *N*:
 - Sketch the open-loop locus (Polar Plot) from $\omega = -\infty$ to $+\infty$
 - Draw a straight line in any direction from (-1 + j0) point
 - Where this line crosses open-loop locus, mark arrow heads in the direction of increasing frequency
 - N = number of clockwise arrows number of counterclockwise arrows

Consider a closed-loop system whose open-loop transfer function is given by

$$G(s)H(s) = \frac{K}{(T_1s+1)(T_2s+1)}$$

with *K*, T_1 and T_2 are positive values. Examine the stability of the system with the given polar plot. Im

Consider the system with the following open-loop transfer function,

$$G(s)H(s) = \frac{K}{s(T_1s+1)(T_2s+1)}$$

with K, T_1 and T_2 are positive values. Determine the stability of the system for two cases: (1) the gain K is small and (2) K is large.

Answer:

Nyquist Stability Criterion: Z = N + P P = 0 N = 0Hence, Z = 0.

The system is stable since there is no closed-loop poles in the right-half *s* plane

School of Professional Education and Executive Development 專業造修學院

Example 7

Answer:

Nyquist Stability Criterion: Z = N + P P = 0N = 2 (2 clockwise encirclements of (-1 + j0)

Hence, Z = 2.

The system is **unstable** since there is 2 closed-loop poles in the right-half *s* plane

Relative Stability Analysis

Relative Stability

- The degree of stability of a stable system, hence we can think of different design strategies to improve the stability of the control systems
- The closer the $G(j\omega)H(j\omega)$ locus comes to encircling the point (-1 + j0), the more oscillatory is the system response
- Hence, the proximity of the open-loop frequency response $(G(j\omega)H(j\omega))$ locus) to the point (-1 + j0) on the *GH*-plane (or *F*(*s*)-plane) is a measure of the relative stability of a closed-loop system
- It is a common practice to represent the proximity in terms of **phase margin** and **gain margin**

Relative Stability Analysis

Gain Margin

- It is defined as the additional gain required to make the system just unstable
- The amount by which the magnitude of $G(j\omega)H(j\omega)$ must be increased in order to be equal to 1 when $\angle G(j\omega)H(j\omega) = -180^{\circ}$
- Phase crossover frequency (ω_{pc}) the frequency at which $\angle G(j\omega)H(j\omega) = -180^{\circ}$

$$G.M. = \frac{1}{|G(j\omega)H(j\omega)|}$$

 $G.M.(dB) = -20 \log|G(j\omega)H(j\omega)|$

Typical Degree Values $G.M. = 1.5 \sim 4.0 (3.5 \sim 12 \text{ dB})$

Relative Stability Analysis

Phase Margin

- It is defined as the additional phase lag required to make the system just unstable
- The additional phase lag required make $\angle G(j\omega)H(j\omega) = -180^{\circ}$ at the frequency for which the magnitude of $G(j\omega)H(j\omega)$ is equal to 1
- Gain crossover frequency (ω_{gc}) the frequency at which $|G(j\omega)H(j\omega)| = 1$

$$P.M. = \gamma = 180^{\circ} + \angle G(j\omega)H(j\omega)$$

$$\gamma = 180^\circ + \phi$$

Typical Degree Values $P.M. = \gamma = 30^{\circ} \sim 60^{\circ}$

Relative Stability Analysis

- (a) Bode diagrams
- (b) Polar Plots
- (c) Log-magnitude versus-phase plots

43

Obtain the phase and gain margins of the system shown below for the two cases where K = 10 and K = 100.

Answer:

You can either draw the **Bode diagrams, polar plot or Nichols plot** of the **open-loop** frequency response for determining the G.M. and P.M. with the following magnitude and phase equations.

$$G(j\omega) = \frac{K}{j\omega(j\omega+1)(j\omega+5)}$$

$$|G(j\omega)|(dB) = 20 \log K - 20 \log \omega - 20 \log \sqrt{1 + \omega^2} - 20 \log \sqrt{5^2 + \omega^2}$$

$$\angle G(j\omega)(^{\circ}) = -90^{\circ} - \tan^{-1}\omega - \tan^{-1}\frac{\omega}{5}$$

 $|G(j\omega)|(dB) = 20 \log K - 20 \log \omega - 20 \log \sqrt{1 + \omega^2} - 20 \log \sqrt{5^2 + \omega^2}$

 $\angle G(j\omega)(^{\circ}) = -90^{\circ} - \tan^{-1}\omega - \tan^{-1}\frac{\omega}{5}$

	<i>K</i> = 10		<i>K</i> = 100	
ω (Rad/s)	Magnitude (dB)	Phase	Magnitude (dB)	Phase
0.2	19.823	-103.6°	39.823	-103.6°
0.5	11.029	-122.28°	31.029	-122.28°
1	2.84	-146.31°	22.84	-146.31°
2	-7.634	-175.24°	12.37	-175.24°
5	-25.119	-213.7°	-5.119	-213.7°
6	-29.1	-220.73°	-9.1	-220.73°
7	-32.584	-226.33°	-12.584	-226.33°
8	-35.685	-230.87°	-15.685	-230.87°
10	-41.01	-237.72°	-21.01	-237.72°

The phase and gain margins can easily be obtained from the Bode diagram. The phase and gain margins for K = 10 are P.M. = 21° and G.M. = +8 dBTherefore, the system gain may be increased by 8 dB before the instability occurs. The phase and gain margins for K = 100 are P.M. = -30° and G.M. = -12 dBThus, the system is stable for K = 10, but unstable for K = 100.

Answer:

Beside graphically solved the problem, we can use **<u>analytical method</u>** as below.

$$G(j\omega) = \frac{K}{j\omega(j\omega+1)(j\omega+5)}$$
$$\angle G(j\omega)(^{\circ}) = -90^{\circ} - \tan^{-1}\omega - \tan^{-1}\frac{\omega}{5} \qquad |G(j\omega)| = \frac{K}{\omega\sqrt{1+\omega^2}\sqrt{5^2+\omega^2}}$$

Gain Margin

When system phase, $\phi = -180^{\circ}$, and put it into the phase equation, we can find the phase crossover frequency, ω_{pc} ,

$$-180^{\circ} = -90^{\circ} - \tan^{-1}\omega - \tan^{-1}\frac{\omega}{5}$$

$$90^{\circ} = \tan^{-1}\omega + \tan^{-1}\frac{\omega}{5}$$
Since $\tan^{-1}X + \tan^{-1}Y = \tan^{-1}\left(\frac{X+Y}{1-XY}\right)$, hence $\infty = \frac{\omega + \frac{\omega}{5}}{1-(\omega)\left(\frac{\omega}{5}\right)}$

Answer:

Gain Margin

The equation is equal to infinity if and only if the denominator is equal to zero, we have

$$1 - \frac{\omega^2}{5} = 0 \Rightarrow \omega^2 = 5 \Rightarrow \omega = 2.236 \text{ rad/s}$$

The phase crossover frequency, $\omega_{pc} = 2.236$ rad/s. Substitute this into the magnitude equation with K = 10, we have

$$|G(j\omega)| = \frac{10}{2.236\sqrt{1 + (2.236)^2}\sqrt{5^2 + (2.236)^2}} = 0.3333$$

$$|G(j\omega)| = -20 \log 0.3333 = -9.543 \, \mathrm{dB}$$

 \therefore G.M. = 0 - (-9.543) = 9.543 dB

Answer:

Phase Margin

When system magnitude, $|G(j\omega)| = 1$ or 0 dB, and put it into the magnitude equation, we can find the gain crossover frequency, ω_{gc} , for K = 10,

$$1 = \frac{10}{\omega\sqrt{1+\omega^2}\sqrt{5^2+\omega^2}} \quad \Rightarrow \quad \sqrt{\omega^2(1+\omega^2)(25+\omega^2)} = 10$$

So, the equation will be, $\omega^6 + 26\omega^4 + 25\omega^2 - 100 = 0$. Substitute $a = \omega^2$ into the equation, we have

$$a^3 + 26a^2 + 25a - 100 = 0$$

By the solving the equation, we have a = -2.675 (rejected), a = -24.83 (rejected) and a = 1.506. Hence, $\omega^2 = 1.506$, $\omega = \omega_{gc} = 1.227$ rad/s

Put
$$\omega_{gc} = 1.227 \text{ rad/s into } \angle G(j\omega) = -90^{\circ} - \tan^{-1}\omega - \tan^{-1}\frac{\omega}{5}$$
,
 $\angle G(j\omega) = -90^{\circ} - \tan^{-1}1.227 - \tan^{-1}\frac{1.227}{5} = -154.61^{\circ}$
∴ P.M. = $180^{\circ} + (-154.61^{\circ}) = 25.39^{\circ}$

Answer:

Repeat the same procedures for K = 100.

Gain Margin

Since the change of gain K will not affect the phase equation and hence the phase crossover frequency, $\omega_{pc} = 2.236$ rad/s. So, the system gain is,

$$|G(j\omega)| = \frac{100}{2.236\sqrt{1 + (2.236)^2}\sqrt{5^2 + (2.236)^2}} = 3.3335$$

$$|G(j\omega)| = 20 \log 3.335 = 10.46 \,\mathrm{dB}$$
 \therefore G.M. = 0 -10.46 = -10.46 dB

Phase Margin

We need to recalculate the gain crossover frequency, ω_{gc} , for the new gain K.

$$1 = \frac{100}{\omega\sqrt{1+\omega^2}\sqrt{5^2+\omega^2}}$$

Hence, we have $\omega_{gc} = 3.907 \text{ rad/s}$. Put $\omega_{gc} = 3.907 \text{ rad/s}$ into $\angle G(j\omega)$, we have $\angle G(j\omega) = -90^{\circ} - \tan^{-1} 3.907 - \tan^{-1} \frac{3.907}{5} = -203.65^{\circ}$ $\therefore \text{P.M.} = 180^{\circ} + (-203.65^{\circ}) = -23.65^{\circ}$