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Control System Analysis

Unit 5
Frequency Response Analysis
(Reference: [1] chapter 7.1to0 7.7 )
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* [ntroduction
« Bode Diagram (Exact vs Asymptotic)
 Polar (or Nyquist) Plot
* Log-Magnitude-versus-Phase Plot (Nichols Plot)
* Nyquist Stability Criterion
 Relative Stability Analysis
— Gain Margin and Phase Margin
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Frequency Response Approach
« Steady-state response of a system to a sinusoidal input
« Varying the frequency of the input signal over a certain range and study the

resulting response
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Introduction

« Use the data obtained from measurements (experimentally) on the physical
system without deriving its mathematical model (without the transfer
function of the control system)

* Replacing s in the transfer function G(s) by jw, where w is the frequency
» Graphical forms: Bode Diagram, Nyquist (Polar) Plot and Nichols Plot

U(s)

\ 4

u(t) = Asin(wt)
U(jw)

G(s) or G(jw)

Y(s)

»  y(t) = Bsin(wt + ¢)

Y(jw)

¢: Phase Shift
3
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Introduction
Freguency Response Approach

Input U(t) = A sin(wt)

e
eV aVA'S YGo) _ o
OO

Outputy(t) =B sin(wt + ¢)

« The function G (jw) is called the sinusoidal transfer function, which is a
complex quantity

» It can be represented by the magnitude and phase angle with frequency as a
parameter

1G(jw)| = Yyo)| _ _ amplitude ratio of the output sinusoid to the
U(jw)| ~ input sinusoid

Y(jw) _ phase shift of the output sinusoid with respect
Va4 =4L——= ) : .
Glw) = UG®)  to the input sinusoid 4
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Example 1

Consider the system shown below, the transfer function G(s) is

X
———

K
Is + 1

V
——

G(s)

Replacing s in the transfer function G(s) by jw,

G(w) =

jwT + 1

The amplitude ratio of the output to the input is,

G(w)| =

While the phase angle ¢ is,

2G(jw) = tan™1 s tan~1

K

J@D)?+12 V1 + w?T?

wT _q
— = —tan" - wT
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Bode Diagram

Overview

Consists of 2 graphs: logarithm of the magnitude of a sinusoidal transfer
function and phase angle

Both are plotted against the frequency on a logarithmic scale
The logarithmic magnitude of G (jw) is 201log,,|G(jw)| dB (decibels)
The phase angle (or phase shift) is in degrees or radians

The curves are drawn on semilog paper, using the log scale for frequency
and the linear scale for either magnitude or phase angle

Exact Bode Diagram

Substitute different values of w (rad/s) into the magnitude and phase angle
equations for plotting

Asymptotic Bode Diagram

Identify basic factors of G (jw)H (jw) for plotting
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Bode Diagram

Basic Factors of G (jw)H (jw) for plotting Asymptotic Bode Diagram

e GainK
1

]w) and derivative (jw) factors

* Integral (

- First-order factors, e.g. (1 + jwT) and (1+]1'a)T)

» Quadratic factors, e.g. ((jw)? + 2jw{w, + w?2) and ( , )

(Jw)24+2jwlwn+w3
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Bode Diagram (Asymptotic)

The Gain K

A number greater than unity has a positive value in decibels, while a number smaller

than unity has a negative value
Consider G(jw) = K, K = constant

Magnitude: 20 log|G(jw)| = 20logK

Phase Angle: £G(jw) = tan™?!

9 _ oo
K

The effect of varying the gain K in the
transfer function is that it raises or
lowers the log-magnitude curve of the
transfer function by the corresponding
constant amount, but it has no effect
on the phase curve.

Magnitude (dB)

Phase {deg)

Bode Diagram
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G(w) =K

0
10

Frecuency (radfsec)

10
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Bode Diagram (Asymptotic)
Integral Factor (Pole) 6(jw) = —
Jw
Consider G (jw) = — 1
J@ 40 |-
Maanitude: 201 1| _ 50 1 20 Slope = —20 dB/decade
agnituae: 20 og|j—w| = 20log (Z) LN
20 |
=20logw™! = —20logw (dB) 0 i
0.1 1 0 100 o
* The slope of the line is —20 dB / decade i
M
Phase angle: £G (jw) = —tan™! = = —90° 00
180° | | .
0.1 1 0 100 o

Bode diagram of
G(jw) = 1/jw
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Bode Diagram (Asymptotic)

Derivative Factor (Zero)
Consider G(jw) = jw

Magnitude: 20 log|jw| = 20logw (dB)
* The slope of the line is +20 dB / decade

Phase angle: £G(jw) = tan~1= = +90°

o|g

dB A

40

ard Exscuctes Devecomatl
NERERE

SPEE%

G(jw) =jw

Slope = 20 dB/decade

| | -
-—

90°

10 100 @

I | -
-

1

10 100 @

Bode diagram of
Gljw) =jw

10
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Bode Diagram (Asymptotic)

First-Order Factors (Pole)

1
Consider G(jw) = 1
() 1+jwT G(w) = _
Magnitude: 20 log|G (jw)| = 2010g| : | Lol
| 1tjeT Gain
1
= 201log = —ZOlogxfl + w?T? (dB) 0ds

V12 + (wT)?
—20 dB

Phase angle: 2G(jw) = ¢ = —tan™! wT | :
) U ¢ Phase, i~ «—— One

« Atlow frequencies, w < 1/T, 0°
—20logy/1 + w?T? ~ —20log1 = 0 dB _450

-90°

* At high frequencies, w > 1/T,
—20log+y/1 + w?T? ~ —20logwT dB
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Bode Diagram (Asymptotic)

First-Order Factors (Pole)

The frequency at which the two asymptotes meet is
called the corner frequency or break frequency

« Corner frequency for this example: w = 1/T G(jw) =
« At low frequencies, = —20log1 = 0 dB Gain
* At high frequencies, = —201log 10 = —20 dB

0 dB
« Atw = 0rad/s, Qb = 0° -20 dB
e Atw — oorad/s, ¢p = —90°

+ Atw=1/Tradls, ¢ = —tan"" (3)T = —45°  Phase, ~ “——«— One
0°b—=_ |

The error in the magnitude curve caused by the
use of asymptotes at corner frequency s, _45°

-90°

1\2
—2010g\/1 + <?> T2 = —20logVv2 = —3.01 dB
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Bode Diagram (Asymptotic)

First-Order Factors (Zero)
Consider G(jw) =1+ jwT

The log-magnitude and the phase-angle curves
need only be changed in sign of the previous case

Magnitude: 20log|G (jw)| = 20log V12 + w2T2 (dB)
Phase angle: 2G(jw) = ¢ = tan 1 wT

The corner frequency is the same

(Gain

G(w) =1+ jwT

B

0dB

Phase,

+90°

+45°

Uﬂ

13
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Bode Diagram (Asymptotic)

Quadratic Factors (Pole) 1
. . . 1 G(I(‘)) — w w 2
Consider G(]w) T (jw)2+2jwlwn+w? 1+2¢ (] (U_n> + (] a)_n)

« |If { =1, this quadratic factor can be expressed as a product of two first-order factors
with real poles
 |If0 < < 1, this quadratic factor is the product of two complex conjugate factors

« Asymptotic approximations to the frequency-response curves are not accurate for a
factor with low values of ¢

Magnitude: 20 log | = —201log 1_? + zcw_
) . W
(i) + (1) ' '

At low frequencies such that w < w,,, the log-magnitude becomes, —20log1 = 0 dB
At high frequencies such that w >» w,,, the log-magnitude becomes,

2

20102 — = —40log— dB
ng%— ngn 14
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Quadratic Factors (Pole) 2 o
10 Ay ¥
- 0.0
Zgwﬂ Y I— S===1N 0.5
Phase: ¢ = —tan™! = S o “b{f EN
1— (3) 2
Wn -20 .
-30
At w = 0, the phase angle equals 0° » al
0.1 02 0304 080810 2 3 456 810
At the corner frequency w = w,,, the phase Normalized Frequency (a)
angle is —90° regardless of ¢, (A) Magnitude Plot
0
& i S-S SS\
¢ =—tan! =) _ —tan"too =—-90° % " “ﬁ%h‘%‘:\;\‘ = o1
0 ¢ < IS S\
% 80 0.8
At w = oo, the phase angle becomes —180° g -100 '
£ NS
. NSS
=
01 1 10

Normalized Frequency (mfmg)
(B) Phase Plot 15
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Bode Diagram (Asymptotic)

Quadratic Factors (Zero)
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2
Consider G(jw) = (jw)? + 2jw{w, + i =| 1+ 2¢ (](%) + (J(%)

n n

« Similar to the first order factor, merely reversing the sign of the log magnitude and that
of the phase angle of the factor

2 2
. w2 )
Magnitude: — 2010g\/<1 — _2> 4+ (2(_>
wn wn

Phase: ¢ =tan~!

16
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Bode Diagram (Asymptotic)

General Procedure for Plotting Bode Diagrams

» Rewrite the transfer function, G(jw)H (jw), as a product of the basic
factors as discussed before

 ldentify the corner frequencies associated with these basic factors

« Draw the asymptotic log-magnitude curves with proper slopes between the
corner frequencies

» The phase-angle curve can be drawn by adding the phase-angle curves of
Individual factors
Advantages

* Much less time than other methods that may be used for computing the
frequency response of a transfer function

« The ease of plotting the frequency-response curves for a given transfer
function and the ease of modification as compensation is added are the
main reasons

17
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Example 2
Plot the Bode diagram for the transfer function,

10
G(s) =
)= 53720

Answer:
Step 1: Replacing s by jw and rewrite the transfer function as a product of basic
factors

10 2 1/2

G(jw) = - =20 ____
jow+20 jw+20 ]a)+1
20 20

1
Magnitude of the Gain constant = 201log <§> = —6.01 dB

Step 2: Identify the corner frequencies
Since there is only one first order factor (Pole), the corner frequency is, w = 20 rad/s

18
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Example 2

Answer:

Step 3: Draw the asymptotic log-magnitude and phase-angle curves for individual
basic factors

Step 4: Combine the log-magnitude and phase-angle curves

MLL] nGsy (AB)
/]

| (o 0 A
. T B P T L 5
Lf\.z(u"-? dfs)
i ;
: ~Uan
5 bl i
1 e e e g (onglent
(+)
~-(o
Ao e
-

\ & -v\..
\(HJ;)

19
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Example 2 L
GQw)zjw
Answer: 20t

Goin Constont (1],
Q/ >
(/\)(ﬂw(/s )

(p{li‘

4/ >

20
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Example 2 G(]w)=m
Answer: ' 10
ANSWEr: | GUw)| = 2010gm
Exact Bode Diagram from Matlab w
| 2G(jw) = —tan"lz—O
; ] Bode Diagram ]
(rad/s) (dB) (°)
2 15 : : 1 -6.03 -2.86
.l : 3 -6.12 -8.53
S | 5 -6.28 -14.04
zz 10 -6.99 -26.57
B SRS AN 20 -9.03 -45
' | | | 50 14.62 682
- 70 -17.24 -74.05
g | _ 100 -20.17 -78.69
§ 200 -26.06 -84.29
600 -35.57 -88.09
a0’ - - N\“““—O 800 -38.06 -88.57

Frequency (rad/s) 1000 -40 -88.85 21
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Example 3

Plot the Bode diagram for the transfer function,
100(s + 1)
G(s) =
(s +5)(s+10)

ED o

Answer:

Step 1: Replacing s by jw and rewrite the transfer function as a product of basic
factors

jow + 1
iy o 100G0+1) 100( 1 ) 1\ @0+jw
o) = (jw+5(ow +10) (ja)5+ 5) (ja)l-lz)10> ((5)(10)) B (1 +]Tw) (1 _I_]l_a(;)

Step 2: Identify the corner frequencies
Magnitude of the Gain
constant

Corner frequency is, w =10 rad/s for the pole (1 + %) = 201log(2) = 6.01 dB

Corner frequency is, w = 5 rad/s for the pole (1 + %)

Corner frequency is, w = 1 rad/s for the zero (1 + jw)
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Example 3

Answer:

Step 3: Draw the asymptotic log-magnitude and phase-angle curves for individual
basic factors

Step 4: Combine the log-magnitude and phase-angle curves

f\/fg nlwele (AL

W)
( _ &t d] deadly
=L
i &) Aadle
MW al Y (&A= i
it 3
b2 L Conktlonat ()
y 9 G2
| \,\))éﬁ”t‘%/s)
il i \
Th ~ et
i) \c( l*%)
e~ i oy ‘W Y N
U’{' }? ) /1 T ~
1 > Ul
0 10 ~U i
i
L2 A B Aecads 23
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) (1 1y
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Answer:

Phﬂ/ﬁt ( [)&7@7@& )

( Hj_t/v\
?‘C T I S WA RN 1170 W17 T L | o [ M
i -
Saypmg
90»11’\ Cb%li’ﬁ‘»w]
(2
i >
Wwivad/s )
~”
_f,j o

24
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Example 3 CU9) = G5 + 10)
, 100Vw? + 12
Answer: 1GGw)l = o e e T 102
Exact Bode Diagram from Matlab © w
£G(jw) =tan ! w — tan~1 T tan~! 10
(rad/s) 23] ()
~ 0.1 6.06 3.99
35 0.5 6.94 17.99
5 0.8 8.03 25
1 8.82 27.98
3 14.31 23.9
5 16.19 7.13
10 16.06 -24.15
g 30 9.89 64.01
£ 50 5.81 7413
100 -0.05 -82
ol - - » . 500 -13.98 -88.4

102 107! 10° 10! 102 10°

Frequency (rad/s) 1000 20 -89.2 25
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Polar (or Nyquist) Plot

Overview

« Anplot of the magnitude of G (jw)
versus the phase angle of G(jw) on
polar coordinates as w is varied from
zero to infinity

* Note that in polar plots a positive
(negative) phase angle is measured
counterclockwise (clockwise) from
the positive real axis

» Each point on the polar plot of
G (jw) represents the terminal point
of a vector at a particular value of w

It depicts the frequency-response
characteristics of a system over the
entire frequency range in a single
plot

Im |

~—Re[G(jw)]—=

\

26
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Example 4

The polar plot of the transfer function,

G(s) = _9
s(s+1)
Answer:
Replacing s into jw, G(jw) = - .10
jo(w + 1)
Write the expressions for magnitude and phase of G (jw) and varies w from 0 to .
w rad/s M ¢
0 00 —90° 10
0.5 17.89 ~116.57° M= =
1.0 7.071 —135°
2.0 2.236 —153.43° $=-90°—tan "l w
5.0 0.392 —168.69°
8.0 0.155 —172.87°

10.0 0.995 —174.29° 21
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Example 4

Answer:
The polar plot is, 5 |
Imaginar}r‘!‘
1
OFcmcmcmccccmccccccec e Real
:-116.5?“
-5_ I -
"
"
-10+F [
1
"
197 0.5 :
|
"
=20+ [
|
"
'
-25 1 1 1 1 | |
25  -20 -15 -10 -5 0 5

28
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Log-Magnitude-versus-Phase Plot (Nichols Plot)

Overview

A plot of the logarithmic magnitude in decibels versus the phase angle or
phase margin for a frequency range of interest

The phase margin is the difference between the actual phase angle ¢ and —
180°; that is, ¢p — (—180°) = 180° + ¢

It combines the 2 curves, log-magnitude curve and the phase-angle curve,
In Bode diagrams

A change in the gain constant of G (jw) merely shifts the curve up (for
Increasing gain) or down (for decreasing gain), but the shape of the curve
remains the same

The relative stability of the closed-loop system can be determined quickly
and that compensation can be worked out easily

29
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Example 5

The Nichols plot of the transfer function,

ard Eescus
o

ED o

G(s) = 10
s(s+1)
Answer:
Replacing s Into jw, G (jw) = - .10
jo(w + 1)
Write the expressions for magnitude and phase of G (jw) and varies w from 0 to .
w rad/s M (dB) ¢ 10

0 ® —90° M= woVw? + 12

0.5 25.05 —116.57°

1.0 16.99 ~135° ) ;8 1122\1/(%105; @

2.0 6.99 —153.43°

5.0 —-8.13 —168.69°

8.0 _16.19 _172.87° ¢ =-90°—tan"tw

10.0 —20.04 —174.29°
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Answer:
The Nichols plot is,

30

20

10

-10

-20
-190

Example 5

Gain (dB)

E s e s s s s s s s s s s s S S S S S T T ST TS S e

Phase

-180 -170 -160 -150 -140 -130 -120

-110 -100 -90
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Log-Magnitude-versus-Phase Plot (Nichols Plot)

Lh

|G in dB

[
=
|

0=

=] -00°

— 180"

N

0.2 e,

0. S,
a

(a)

iy

Qary

Im

Three representations of the frequency response of

ke

ib)

1

F L |
ix} 0 I

(i) + (=
1+ 2 "Iu.n,,J + ||__}'wﬂ__l|

(a) Bode diagram; (b) polar plot; (c) log-magnitude-versus-phase plot.

[

e
I

|G in dB

Jord = 0.

|:|:l

32
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Nyquist Stability Criterion

Overview

« The Nyquist stability criterion determines the stability of a closed-loop
system from its open-loop frequency response and open-loop poles

R(s) C1(s)
G(s)

C(s) _ G(s)
R(s) 1+ G(s)H(s)

 For stability, all roots of the characteristic equation, A(s) =1+ G(s)H(s)
= F(s) must lie in the left-half s plane

» The Nyquist stability criterion relates the open-loop frequency response
G (jw)H (jw) to the number of zeros and poles of A(s) of F(s) that lie in the
right-half s plane

» The absolute stability of the closed-loop system can be determined

graphically from open-loop frequency-response curves
33
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Nyquist Stability Criterion

Stability Analysis of Closed-loop Systems

« Let the closed contour in the s plane enclose the entire right-half s plane

« This contour consists of the entire jw axis from w = —oo to + oo and a semicircular
path of infinite radius in the right-half s plane

« The contour encloses all the zeros and poles of F(s) that have positive real parts

« If the function F(s) has poles or zeros at the origin or at some points the jw axis,
make a detour along an infinitesimal semicircle

Je )
s Plane

jtt}“
s Plane

34
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Nyquist Stability Criterion

Stability Analysis of Closed-loop Systems
» |If the closed contour in the s plane encloses the entire right-half s plane, then
Z=N+P
— Z = Number of right-half s plane zeros of F(s)

— P = Number of right-half s plane poles of G(s)H(s)
— N = Number of clockwise encirclement of the origin of the F(s)-plane

« Asystem is stable, we must have Z =0, or N = —P (having P counterclockwise
encirclements of the origin)

« The origin of the F(s)-plane is the point (=1 + j0) on the G(jw)H (jw) plane

™A GH Plane A G Plane Hence, feedback control system is
stable if and only if, the number of

1) counterclockwise encirclements of

R« the point (—1 + j0) by the map of
’ the Nyquist contour on the GH-plane
= number of poles of the G(s)H(s)
within the Nyquist contour on the s
plane. 35

1 + G(jw) H(jw)

\

G(jw) H(jw)




ZR\ THE HONG KONG e
q b W

POLYTECHNIC UNIVERSITY

A itk 3 T A5 SPEED(
Nyquist Stability Criterion

Practical Approach to Apply the Rule (Z=N + P)
» Determine P by inspecting the denominator of the G(s)H(s)

\

* Determine N:
— Sketch the open-loop locus (Polar Plot) from w = —oo to 4 oo

— Draw a straight line in any direction from (=1 4+ j0) point

— Where this line crosses open-loop locus, mark arrow heads in the direction of
increasing frequency

— N = number of clockwise arrows — number of counterclockwise arrows

36
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Example 6

Consider a closed-loop system whose open-loop transfer function is given by

K

GRS = G T D Ts + D

with K, T, and T, are positive values. Examine the stability of the system with the given
polar plot.

]m“

GH Plane

Answer:

Nyquist Stability Criterion: Z=N+ P

P=0 .
N=0 -1
Hence, Z = 0.

The system is stable since there is no closed-loop
poles in the right-half s plane

G(jw) H(jw)

37



Q THE HONG KONG “M_:
QAPLH.H TECHNIC UNIVERSITY o
v itk J T oK 5R SPEED
”~

Example 7

Consider the system with the following open-loop transfer function,

K

COHS) = S T DT + 1)

with K, T, and T, are positive values. Determine the stability of the system for two
cases: (1) the gain K is small and (2) K is large.

GH Plane
w:D—I

Answer: P=0
Nyquist Stability Criterion: Z=N + P 220
P=0 0=
N — 0 -1 R Re
Hence, Z = 0. (Stable)

The system is stable since there is no closed-loop !

poles in the right-half s plane

Small K 38
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ANSWer: m 4 GH Plane
Nyquist Stability Criterion: Z=N+P

P=0
N =2 (2 clockwise encirclements of (—1 + j0)
Hence, Z = 2.

Y

The system is unstable since there is 2 Re

closed-loop poles in the right-half s plane

oy = — 0

(Unstable)

39



POLYTECHNIC UNIVERSITY

Qb'l HE HONG KONG
Q,v ik B T A AR SPEED,

.1:r|‘-'-:l-.'. chee. Devwicamani
NERERE

\

Relative Stability Analysis

Relative Stability

The degree of stability of a stable system, hence we can think of different
design strategies to improve the stability of the control systems

The closer the G(jw)H (jw) locus comes to encircling the point (—1 + j0),
the more oscillatory is the system response

Hence, the proximity of the open-loop frequency response (G (jw)H (jw)
locus) to the point (—1 + j0) on the GH-plane (or F(s)-plane) is a measure
of the relative stability of a closed-loop system

It is a common practice to represent the proximity in terms of phase
margin and gain margin
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Relative Stability Analysis

Gain Margin
» |tis defined as the additional gain required to make the system just unstable

« The amount by which the magnitude of G (jw)H (jw) must be increased in
order to be equal to 1 when 2G(jw)H (jw) = —180°

* Phase crossover frequency (w,) - the frequency at which
£G(jw)H(jw) = —180°

1
GUw)HGw)| , p G.M.= : ,
\ ---------- o~ |G(jw)H(jw)]

f et s Y . G.M.(dB) = —20log|G(jw)H(jw)|

(-140) : ., Re

Typical Degree Values
GM.=15~4.0(3.5~12dB)
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Relative Stability Analysis

Phase Margin
« Itis defined as the additional phase lag required to make the system just

unstable

« The additional phase lag required make 2G (jw)H (jw) = —180° at the
frequency for which the magnitude of G (jw)H (jw) Is equal to 1

» Gain crossover frequency (w,.) - the frequency at which |G (jw)H(jw)| =

1

= P.M.=y =180°+ £G(jw)H(jw)

Yy =180°+ ¢

Re

\{

/ {010
¢ "",

Typical Degree Values

TS~ P.M. =y = 30° ~ 60°
w
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7 itk 7L T K 52 + \ 4 gain margin " W gain margin S P E E ]j,-«
g I' I > Log @ 3 I' b Log @ -
ER) | ER P
- S - o S - N
i | b
Relative | 5
I ! b
Lo Dol
-90° yoi _og° .
! I
- u % e _—\ _ L\:\- o \! * )
ability . S
_270° = Positive e L
ph:]:v,cu’:b::;rgin Negative
' phase margin

L}
A n a I S I S Stable system Unstable system
(a)

Im Im

Positive
gain
margin

Negative G plane

phase margin

Positive

phase
margin I .
—r = thgtn-c
o . s = gain
Gjw) Gijw) margin
Stable system Unstable system

(b)

(a) Bode diagrams
(b) Polar Plots Postv

Prase Negative
(c) Log-magnitude e e

—

margiu/ H"I

versus-phase plots £ Vroie ] / |
gaim —=
margin phase

0
|G

| in dB
| —-— o 4

|€

|in dB
| ——o——

| .
.. Negative

; margin

-270° —180° -90° -270° -180° -90°
/G £G
Stable system Unstable system 43
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Obtain the phase and gain margins of the system shown below for the two cases where

K =10and K =100.

Ri(s)

Answer:

I

Ci(s)

slis+ D) is+35)

You can either draw the Bode diagrams, polar plot or Nichols plot of the open-loop

frequency response for determining the G.M. and P.M. with the following magnitude

and phase equations.

K

Gw) =

jo(w +1)(jw + 5)

|G(jw)|(dB) = 20logK — 20logw — 20log+/1 + w? — 20log+/5% + w?

£G(jw)(®) = —90°—tan lw —tan" 1=

)
5

44



POLYTECHNIC UNIVERSITY

Qb'l HE HONG KONG
N

ard Fescutes Deveopratl
NERERE

SPEE%

& itk B T AR
Example 8
1G(jw)|(dB) = 201log K — 20logw — 20log /1 + w? — 201log+/5% + w?
£G(w)(®) =—90°—tan"lw — tan_lg
K=10 K =100
w (Rad/s) Magnitude (dB) Phase Magnitude (dB) Phase
0.2 19.823 —103.6° 39.823 —103.6°
0.5 11.029 —122.28° 31.029 —122.28°
1 2.84 -146.31° 22.84 -146.31°
2 —7.634 —175.24° 12.37 —175.24°
5 —25.119 —213.7° -5.119 —213.7°
6 -29.1 —220.73° -9.1 —220.73°
7 -32.584 —226.33° -12.584 —226.33°
8 —35.685 —230.87° —15.685 —230.87°
10 -41.01 —237.72° -21.01 —237.72°
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30 - S50 —
K=10 K=100
20 40
Answer: ~ ~
10 4 30 <
g 0 N g 20 N
5 Ir\+8 dB {Gain margin) E \\t
= LN =
bl lo | K \ - lD \
: | \ {Gain margin) —12 dB \\
=20 I i \.\ 0 1 [
Lo N\ | N\
~30 ! | \\ -10 I |
) I | | '
i \ LN
0° : ; 0° : :
i ! | |
! :
.. |
i | ! |
—9p° I ; —90° ; i
- 1 - T
E -“HH""H.. i’ i %] H‘HH“H\. : !
180° {Phase margin) +2 r”\"\\__‘di 50 "\HI -'|
* x'“‘*-._\ (Phase marg]n}m“-x\__—EO’
_270° —270° - -
0.2 04 06081 2 4 6 810 0.2 04 06081 2 4 6 810
[ [
(a) (b)

The phase and gain margins can easily be obtained from the Bode diagram.

The phase and gain margins for K = 10 are PM. = 21° and G.M. = +8 dB

Therefore, the system gain may be increased by 8 dB before the instability occurs.

The phase and gain margins for K = 100 are P.M. =-30° and G.M. =-12 dB

Thus, the system is stable for K = 10, but unstable for K = 100. 46



POLYTECHNIC UNIVERSITY

5 itk T T A AR SPEED

ZR)\, 11 HONG KONG ey
q b W

\

Example 8

Answer:
Beside graphically solved the problem, we can use analytical methed as below.
G(jw) = K
(o) = jo(w +1)(jw +5)
; o0y — __ o __ -1, _ —13 G(i =
£G(jw)(®) = —90°—tan™ ' w — tan z |G(jw)| ANy
Gain Margin

When system phase, ¢ = —-180°, and put it into the phase equation, we can find the
phase crossover frequency, wy.,
w

—180° = —90°—tan "t w — tan~1 T

)
90° =tan" Y w + tan1 T

w +w

X+Y =

Since tan™'X +tan™'Y = tan"1< ) . hence ®©= Sw
1-XY 1—(w) (?)
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Answer:
Gain Margin
The equation is equal to infinity if and only if the denominator is equal to zero, we have

2
w
1—?=0=>a)2=5=>a)=2.236rad/s

The phase crossover frequency, w,. = 2.236 rad/s. Substitute this into the magnitude
equation with K = 10, we have

10
1G(jw)| = = 0.3333
2.2364/1 + (2.236)2,/52 + (2.236)2

IG(jw)| = —2010g 0.3333 = —9.543 dB

~.G.M. =0 - (-9.543) = 9.543 dB
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Answer:
Phase Margin

When system magnitude, |G (jw)| =1 or 0 dB, and put it into the magnitude equation, we
can find the gain crossover frequency, wg,, for K =10,

10

1=
wV1+ w?V52 + w?

= \/a)z(l + w?)(25+ w?) =10

So, the equation will be, ®® + 26w* + 25w? — 100 = 0. Substitute a = w? into the
equation, we have

a3 + 26a? + 25a — 100 =0
By the solving the equation, we have a = —2.675 (rejected), a = —24.83 (rejected) and
a = 1.506. Hence, w* = 1.506, w = wy, = 1.227 rad/s

Put wy = 1.227 rad/s into £G(jw) = —90° —tan™" w — tan™"

n| e

1.227
£G(jw) = —=90° —tan~11.227 —tan™! —— = —154.61°

5
-.P.M. =180° + (—154.61°) = 25.39°
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Answer:
Repeat the same procedures for K = 100.
Gain Margin

Since the change of gain K will not affect the phase equation and hence the phase crossover
frequency, w,. = 2.236 rad/s. So, the system gain is,

100
1G(jw)| = = 3.3335
2.2364/1 + (2.236)%,/52 + (2.236)?

IG(jw)| = 201og 3.335 = 10.46 dB ~.G.M.=0-10.46 = -10.46 dB

Phase Margin

We need to recalculate the gain crossover frequency, wy,, for the new gain K.
100

V1 + w2V5? + w2
Hence, we have w,. = 3.907 rad/s. Put w,, = 3.907 rad/s into £G (jw), we have

3.907
£G(jw) = —90° — tan"13.907 — tan~ ! = = —203.65°

-.P.M. =180° + (—203.65°) = —23.65°
50



