
SEHS4653
Control System Analysis

Unit 5

Frequency Response Analysis

(Reference: [1] chapter 7.1 to 7.7 )
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Introduction

Frequency Response Approach

• Steady-state response of a system to a sinusoidal input

• Varying the frequency of the input signal over a certain range and study the 

resulting response

• Use the data obtained from measurements (experimentally) on the physical 

system without deriving its mathematical model (without the transfer 

function of the control system)

• Replacing s in the transfer function G(s) by 𝑗𝜔, where 𝜔 is the frequency

• Graphical forms: Bode Diagram, Nyquist (Polar) Plot and Nichols Plot
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𝐺 𝑠 𝑜𝑟 𝐺(𝑗𝜔)
𝑈(𝑠) 𝑌(𝑠)

𝑈(𝑗𝜔) 𝑌(𝑗𝜔)
𝑢 𝑡 = 𝐴 sin 𝜔𝑡 𝑦 𝑡 = 𝐵 sin 𝜔𝑡 + 𝜙

𝜙: Phase Shift



Introduction
Frequency Response Approach

• The function 𝐺(𝑗𝜔) is called the sinusoidal transfer function, which is a 
complex quantity

• It can be represented by the magnitude and phase angle with frequency as a 
parameter
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𝑢 𝑡 = 𝐴 sin 𝜔𝑡

𝑦 𝑡 = 𝐵 sin 𝜔𝑡 + 𝜙

𝑌(𝑗𝜔)

𝑈(𝑗𝜔)
= 𝐺(𝑗𝜔)

𝐺(𝑗𝜔) =
𝑌(𝑗𝜔)

𝑈(𝑗𝜔)
=

∠𝐺(𝑗𝜔) = ∠
𝑌(𝑗𝜔)

𝑈(𝑗𝜔)
=

amplitude ratio of the output sinusoid to the

input sinusoid

phase shift of the output sinusoid with respect

to the input sinusoid

A
B



Consider the system shown below, the transfer function G(s) is

Replacing s in the transfer function G(s) by 𝑗𝜔,

The amplitude ratio of the output to the input is,

While the phase angle 𝜙 is,

Example 1
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𝐺 𝑗𝜔 =
𝐾

𝑗𝜔𝑇 + 1

𝐺(𝑗𝜔) =
𝐾

(𝜔𝑇)2+12
=

𝐾

1 + 𝜔2𝑇2

∠𝐺 𝑗𝜔 = tan−1
0

𝐾
− tan−1

𝜔𝑇

1
= − tan−1𝜔𝑇



Bode Diagram

Overview

• Consists of 2 graphs: logarithm of the magnitude of a sinusoidal transfer 

function and phase angle

• Both are plotted against the frequency on a logarithmic scale

• The logarithmic magnitude of 𝐺(𝑗𝜔) is 20 log10 𝐺(𝑗𝜔) dB (decibels)

• The phase angle (or phase shift) is in degrees or radians

• The curves are drawn on semilog paper, using the log scale for frequency 

and the linear scale for either magnitude or phase angle

Exact Bode Diagram

• Substitute different values of 𝜔 (rad/s) into the magnitude and phase angle 

equations for plotting

Asymptotic Bode Diagram

• Identify basic factors of 𝐺 𝑗𝜔 𝐻 𝑗𝜔 for plotting
6



Bode Diagram

Basic Factors of 𝐺 𝑗𝜔 𝐻(𝑗𝜔) for plotting Asymptotic Bode Diagram

• Gain K

• Integral 
1

𝑗𝜔
and derivative 𝑗𝜔 factors

• First-order factors, e.g. 1 + 𝑗𝜔𝑇 and 
1

1+𝑗𝜔𝑇

• Quadratic factors, e.g. 𝑗𝜔 2 + 2𝑗𝜔𝜁𝜔𝑛 + 𝜔𝑛
2 and 

1

𝑗𝜔 2+2𝑗𝜔𝜁𝜔𝑛+𝜔𝑛
2
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Bode Diagram (Asymptotic)

The Gain K

• A number greater than unity has a positive value in decibels, while a number smaller 

than unity has a negative value

• Consider 𝐺 𝑗𝜔 = 𝐾, K = constant
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Magnitude: 20 log 𝐺(𝑗𝜔) = 20 log𝐾

Phase Angle: ∠𝐺 𝑗𝜔 = tan−1
0

𝐾
= 0°

• The effect of varying the gain K in the 

transfer function is that it raises or 

lowers the log-magnitude curve of the 

transfer function by the corresponding 

constant amount, but it has no effect 

on the phase curve.

20 log𝐾

𝐺 𝑗𝜔 = 𝐾



Bode Diagram (Asymptotic)

Integral Factor (Pole)

Consider 𝐺 𝑗𝜔 =
1

𝑗𝜔

Magnitude: 20 log
1

𝑗𝜔
= 20log

1

𝜔

= 20 log𝜔−1 = −20 log𝜔 (dB)

• The slope of the line is –20 dB / decade

Phase angle: ∠𝐺 𝑗𝜔 = − tan−1
𝜔

0
= −90°

9

𝐺 𝑗𝜔 =
1

𝑗𝜔



Bode Diagram (Asymptotic)

Derivative Factor (Zero)

Consider  𝐺 𝑗𝜔 = 𝑗𝜔

Magnitude: 20 log 𝑗𝜔 = 20 log𝜔 (dB)

• The slope of the line is +20 dB / decade

Phase angle: ∠𝐺 𝑗𝜔 = tan−1
𝜔

0
= +90°
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𝐺 𝑗𝜔 = 𝑗𝜔



Bode Diagram (Asymptotic)

First-Order Factors (Pole)

Consider  𝐺 𝑗𝜔 =
1

1+𝑗𝜔𝑇

Magnitude: 20 log 𝐺(𝑗𝜔) = 20 log
1

1+𝑗𝜔𝑇

= 20 log
1

12 + 𝜔𝑇 2
= −20 log 1 + 𝜔2𝑇2 (dB)

Phase angle: ∠𝐺 𝑗𝜔 = 𝜙 = − tan−1𝜔𝑇

• At low frequencies, 𝜔 ≪ 1/𝑇, 

−20 log 1 + 𝜔2𝑇2 ≈ −20 log 1 = 0 dB

• At high frequencies, 𝜔 ≫ 1/𝑇, 

−20 log 1 + 𝜔2𝑇2 ≈ −20 log𝜔𝑇 dB
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𝐺 𝑗𝜔 =
1

1 + 𝑗𝜔𝑇

1

𝑇



Bode Diagram (Asymptotic)
First-Order Factors (Pole)

The frequency at which the two asymptotes meet is 

called the corner frequency or break frequency

• Corner frequency for this example: 𝜔 = 1/𝑇

• At low frequencies, ≈ −20 log 1 = 0 dB

• At high frequencies, ≈ −20 log 10 = −20 dB

• At 𝜔 = 0 rad/s, 𝜙 = 0°

• At 𝜔 → ∞ rad/s, 𝜙 = −90°

• At 𝜔 = 1/𝑇 rad/s, 𝜙 = − tan−1
1

𝑇
𝑇 = −45°
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𝐺 𝑗𝜔 =
1

1 + 𝑗𝜔𝑇

Magnitude: −20 log 1 + 𝜔2𝑇2 dB

Phase: ∠𝐺 𝑗𝜔 = 𝜙 = − tan−1𝜔𝑇

The error in the magnitude curve caused by the 

use of asymptotes at corner frequency is,

−20 log 1 +
1

𝑇

2

𝑇2 = −20 log 2 = −3.01 dB
1

𝑇



Bode Diagram (Asymptotic)

First-Order Factors (Zero)

Consider  𝐺 𝑗𝜔 = 1 + 𝑗𝜔𝑇

The log-magnitude and the phase-angle curves 

need only be changed in sign of the previous case

Magnitude: 20 log 𝐺(𝑗𝜔) = 20 log 12 + 𝜔2𝑇2 (dB)

Phase angle: ∠𝐺 𝑗𝜔 = 𝜙 = tan−1𝜔𝑇

The corner frequency is the same
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𝐺 𝑗𝜔 = 1 + 𝑗𝜔𝑇

1

𝑇



Bode Diagram (Asymptotic)
Quadratic Factors (Pole)

Consider  𝐺 𝑗𝜔 =
1

𝑗𝜔 2+2𝑗𝜔𝜁𝜔𝑛+𝜔𝑛
2

• If 𝜁 = 1, this quadratic factor can be expressed as a product of two first-order factors 

with real poles

• If 0 < 𝜁 < 1, this quadratic factor is the product of two complex conjugate factors

• Asymptotic approximations to the frequency-response curves are not accurate for a 

factor with low values of 𝜁

20 log
1

1 + 2𝜁 𝑗
𝜔
𝜔𝑛

+ 𝑗
𝜔
𝜔𝑛

2 = −20 log 1 −
𝜔2

𝜔𝑛
2

2

+ 2𝜁
𝜔

𝜔𝑛

2
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∴ 𝐺 𝑗𝜔 =
1

1 + 2𝜁 𝑗
𝜔
𝜔𝑛

+ 𝑗
𝜔
𝜔𝑛

2

Magnitude:

At low frequencies such that 𝜔 ≪ 𝜔𝑛,  the log-magnitude becomes, −20 log 1 = 0 dB

At high frequencies such that 𝜔 ≫ 𝜔𝑛,  the log-magnitude becomes,

−20 log
𝜔2

𝜔𝑛
2 = −40 log

𝜔

𝜔𝑛
dB



Bode Diagram
Quadratic Factors (Pole)
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𝐺 𝑗𝜔 =
1

1 + 2𝜁 𝑗
𝜔
𝜔𝑛

+ 𝑗
𝜔
𝜔𝑛

2

Phase: 𝜙 = − tan−1
2𝜁

𝜔
𝜔𝑛

1 −
𝜔
𝜔𝑛

2

At 𝜔 = 0, the phase angle equals 0°

At the corner frequency 𝜔 = 𝜔𝑛, the phase 

angle is –90° regardless of 𝜁,

𝜙 = − tan−1
2𝜁

0
= − tan−1∞ =− 90°

At 𝜔 = ∞, the phase angle becomes –180°



Bode Diagram (Asymptotic)
Quadratic Factors (Zero)

Consider  𝐺 𝑗𝜔 = 𝑗𝜔 2 + 2𝑗𝜔𝜁𝜔𝑛 + 𝜔𝑛
2 =

• Similar to the first order factor, merely reversing the sign of the log magnitude and that 

of the phase angle of the factor

=20 log 1 −
𝜔2

𝜔𝑛
2

2

+ 2𝜁
𝜔

𝜔𝑛

2
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1 + 2𝜁 𝑗
𝜔

𝜔𝑛
+ 𝑗

𝜔

𝜔𝑛

2

Magnitude:

Phase: 𝜙 = tan−1
2𝜁

𝜔
𝜔𝑛

1 −
𝜔
𝜔𝑛

2



Bode Diagram (Asymptotic)

General Procedure for Plotting Bode Diagrams

• Rewrite the transfer function, 𝐺 𝑗𝜔 𝐻(𝑗𝜔), as a product of the basic 
factors as discussed before

• Identify the corner frequencies associated with these basic factors

• Draw the asymptotic log-magnitude curves with proper slopes between the 
corner frequencies

• The phase-angle curve can be drawn by adding the phase-angle curves of 
individual factors

Advantages

• Much less time than other methods that may be used for computing the 
frequency response of a transfer function

• The ease of plotting the frequency-response curves for a given transfer 
function and the ease of modification as compensation is added are the 
main reasons
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Example 2

Plot the Bode diagram for the transfer function,

𝐺 𝑠 =
10

𝑠 + 20
Answer:

Step 1: Replacing s by 𝒋𝝎 and rewrite the transfer function as a product of basic 

factors

Step 2: Identify the corner frequencies 

Since there is only one first order factor (Pole), the corner frequency is, 𝜔 = 20 rad/s

18

𝐺 𝑗𝜔 =
10

𝑗𝜔 + 20
=

10
20

𝑗𝜔 + 20
20

=
1/2

𝑗𝜔
20 + 1

= 20 log
1

2
= −6.01 dBMagnitude  of the Gain constant



Example 2

Answer:

Step 3: Draw the asymptotic log-magnitude and phase-angle curves for individual 

basic factors

Step 4: Combine the log-magnitude and phase-angle curves
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𝐺 𝑗𝜔 =
1/2

𝑗𝜔
20

+ 1



Example 2

Answer:

20

𝐺 𝑗𝜔 =
1/2

𝑗𝜔
20

+ 1



Example 2

Answer:

Exact Bode Diagram from Matlab
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𝐺 𝑗𝜔 =
10

𝑗𝜔 + 20

|𝐺 𝑗𝜔 | = 20 log
10

𝜔2 + 202

∠𝐺 𝑗𝜔 = − tan−1
𝜔

20

𝜔
(rad/s)

𝐺 𝑗𝜔
(𝑑𝐵)

∠𝐺 𝑗𝜔
(°)

1 -6.03 -2.86

3 -6.12 -8.53

5 -6.28 -14.04

10 -6.99 -26.57

20 -9.03 -45

50 -14.62 -68.2

70 -17.24 -74.05

100 -20.17 -78.69

200 -26.06 -84.29

600 -35.57 -88.09

800 -38.06 -88.57

1000 -40 -88.85



Example 3

Plot the Bode diagram for the transfer function,

𝐺 𝑠 =
100(𝑠 + 1)

(𝑠 + 5)(𝑠 + 10)

Answer:

Step 1: Replacing s by 𝒋𝝎 and rewrite the transfer function as a product of basic 

factors

Step 2: Identify the corner frequencies 

Corner frequency is, 𝜔 = 5 rad/s for the pole 1 +
𝑗𝜔

5

Corner frequency is, 𝜔 =10 rad/s for the pole 1 +
𝑗𝜔

10

Corner frequency is, 𝜔 = 1 rad/s for the zero 1 + 𝑗𝜔
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𝐺 𝑗𝜔 =
100(𝑗𝜔 + 1)

𝑗𝜔 + 5 𝑗𝜔 + 10
=

100
𝑗𝜔 + 1
1

𝑗𝜔 + 5
5

𝑗𝜔 + 10
10

1

(5)(10)
=

2 1 + 𝑗𝜔

1 +
𝑗𝜔
5

1 +
𝑗𝜔
10

= 20 log 2 = 6.01 dB

Magnitude  of the Gain 

constant



Example 3

Answer:

Step 3: Draw the asymptotic log-magnitude and phase-angle curves for individual 

basic factors

Step 4: Combine the log-magnitude and phase-angle curves
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𝐺 𝑗𝜔 =
2 1 + 𝑗𝜔

1 +
𝑗𝜔
5

1 +
𝑗𝜔
10



Example 3

Answer:

24

𝐺 𝑗𝜔 =
2 1 + 𝑗𝜔

1 +
𝑗𝜔
5

1 +
𝑗𝜔
10



Example 3

Answer:

Exact Bode Diagram from Matlab

25

𝜔
(rad/s)

𝐺 𝑗𝜔
(𝑑𝐵)

∠𝐺 𝑗𝜔
(°)

0.1 6.06 3.99

0.5 6.94 17.99

0.8 8.03 25

1 8.82 27.98

3 14.31 23.9

5 16.19 7.13

10 16.06 -24.15

30 9.89 -64.01

50 5.81 -74.13

100 -0.05 -82

500 -13.98 -88.4

1000 -20 -89.2

|𝐺 𝑗𝜔 | = 20 log
100 𝜔2 + 12

𝜔2 + 52 𝜔2 + 102

∠𝐺 𝑗𝜔 = tan−1𝜔 − tan−1
𝜔

5
− tan−1

𝜔

10

𝐺 𝑗𝜔 =
100(𝑗𝜔 + 1)

𝑗𝜔 + 5 𝑗𝜔 + 10



Polar (or Nyquist) Plot

Overview

• A plot of the magnitude of 𝐺 𝑗𝜔
versus the phase angle of 𝐺 𝑗𝜔 on 
polar coordinates as 𝜔 is varied from 
zero to infinity

• Note that in polar plots a positive
(negative) phase angle is measured 
counterclockwise (clockwise) from 
the positive real axis

• Each point on the polar plot of 
𝐺 𝑗𝜔 represents the terminal point 
of a vector at a particular value of 𝜔

• It depicts the frequency-response 
characteristics of a system over the 
entire frequency range in a single 
plot
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Example 4

The polar plot of the transfer function,

𝐺 𝑠 =
10

𝑠(𝑠 + 1)

Answer:

Replacing s into 𝑗𝜔,

Write the expressions for magnitude and phase of 𝐺 𝑗𝜔 and varies 𝜔 from 0 to .
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𝐺 𝑗𝜔 =
10

𝑗𝜔(𝑗𝜔 + 1)

𝑀 =
10

𝜔 𝜔2 + 12

𝜙 = −90° − tan−1𝜔

𝜔 rad/s M 𝜙

0  −90

0.5 17.89 −116.57

1.0 7.071 −135

2.0 2.236 −153.43

5.0 0.392 −168.69

8.0 0.155 −172.87

10.0 0.995 −174.29



Example 4

Answer:

The polar plot is, 
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Log-Magnitude-versus-Phase Plot (Nichols Plot)

Overview

• A plot of the logarithmic magnitude in decibels versus the phase angle or 

phase margin for a frequency range of interest

• The phase margin is the difference between the actual phase angle 𝜙 and –

180°; that is, 𝜙 − (–180°) = 180° + 𝜙

• It combines the 2 curves, log-magnitude curve and the phase-angle curve, 

in Bode diagrams

• A change in the gain constant of 𝐺(𝑗𝜔) merely shifts the curve up (for 

increasing gain) or down (for decreasing gain), but the shape of the curve 

remains the same

• The relative stability of the closed-loop system can be determined quickly 

and that compensation can be worked out easily
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Example 5

The Nichols plot of the transfer function,

𝐺 𝑠 =
10

𝑠(𝑠 + 1)

Answer:

Replacing s into 𝑗𝜔,

Write the expressions for magnitude and phase of 𝐺 𝑗𝜔 and varies 𝜔 from 0 to .
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𝐺 𝑗𝜔 =
10

𝑗𝜔(𝑗𝜔 + 1)

𝑀 =
10

𝜔 𝜔2 + 12

𝜙 = −90° − tan−1𝜔

𝜔 rad/s M (dB) 𝜙

0  −90

0.5 25.05 −116.57

1.0 16.99 −135

2.0 6.99 −153.43

5.0 −8.13 −168.69

8.0 −16.19 −172.87

10.0 −20.04 −174.29

= 20 log 10 − 20 log𝜔

− 20 log 𝜔2 + 1



Example 5

Answer:

The Nichols plot is, 

31



Log-Magnitude-versus-Phase Plot (Nichols Plot)

32



Nyquist Stability Criterion

Overview

• The Nyquist stability criterion determines the stability of a closed-loop 

system from its open-loop frequency response and open-loop poles

• For stability, all roots of the characteristic equation, ∆ 𝑠 = 1 + 𝐺 𝑠 𝐻 𝑠
= F(s)  must lie in the left-half s plane

• The Nyquist stability criterion relates the open-loop frequency response 

𝐺 𝑗𝜔 𝐻(𝑗𝜔) to the number of zeros and poles of ∆ 𝑠 of F(s) that lie in the 

right-half s plane

• The absolute stability of the closed-loop system can be determined 

graphically from open-loop frequency-response curves

33

𝐶(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)

1 + 𝐺 𝑠 𝐻(𝑠)



Nyquist Stability Criterion

Stability Analysis of Closed-loop Systems

• Let the closed contour in the s plane enclose the entire right-half s plane

• This contour consists of the entire 𝑗𝜔 axis from 𝜔 = −∞ to +∞ and a semicircular 

path of infinite radius in the right-half s plane

• The contour encloses all the zeros and poles of F(s) that have positive real parts

• If the function F(s) has poles or zeros at the origin or at some points the 𝑗𝜔 axis, 

make a detour along an infinitesimal semicircle

34



Nyquist Stability Criterion

Stability Analysis of Closed-loop Systems

• If the closed contour in the s plane encloses the entire right-half s plane, then

Z = N + P

– Z = Number of right-half s plane zeros of F(s)

– P = Number of right-half s plane poles of G(s)H(s)

– N = Number of clockwise encirclement of the origin of the F(s)-plane 

• A system is stable, we must have Z = 0, or N = −P (having P counterclockwise

encirclements of the origin)

• The origin of the F(s)-plane is the point (−1 + 𝑗0) on the 𝐺 𝑗𝜔 𝐻(𝑗𝜔) plane

35

Hence, feedback control system is 

stable if and only if, the number of 

counterclockwise encirclements of 

the point (−1 + 𝑗0) by the map of 

the Nyquist contour on the GH-plane 

= number of poles of the G(s)H(s) 

within the Nyquist contour on the s

plane.



Nyquist Stability Criterion

Practical Approach to Apply the Rule (Z = N + P)

• Determine P by inspecting the denominator of the G(s)H(s)

• Determine N:

– Sketch the open-loop locus (Polar Plot) from 𝜔 = −∞ to +∞

– Draw a straight line in any direction from (−1 + 𝑗0) point

– Where this line crosses open-loop locus, mark arrow heads in the direction of 

increasing frequency

– N = number of clockwise arrows − number of counterclockwise arrows
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Example 6

Consider a closed-loop system whose open-loop transfer function is given by

𝐺 𝑠 𝐻 𝑠 =
𝐾

𝑇1𝑠 + 1 𝑇2𝑠 + 1

with K, T1 and T2 are positive values. Examine the stability of the system with the given 

polar plot.

Answer:

Nyquist Stability Criterion: Z = N + P

P = 0

N = 0

Hence, Z = 0.

37

The system is stable since there is no closed-loop 

poles in the right-half s plane



Example 7

Consider the system with the following open-loop transfer function,

𝐺 𝑠 𝐻 𝑠 =
𝐾

𝑠 𝑇1𝑠 + 1 𝑇2𝑠 + 1

with K, T1 and T2 are positive values.  Determine the stability of the system for two 

cases: (1) the gain K is small and (2) K is large.

Answer:

Nyquist Stability Criterion: Z = N + P

P = 0

N = 0

Hence, Z = 0.

38

The system is stable since there is no closed-loop 

poles in the right-half s plane



Example 7

Answer:

Nyquist Stability Criterion: Z = N + P

P = 0

N = 2 (2 clockwise encirclements of (−1 + 𝑗0)

Hence, Z = 2.

39

The system is unstable since there is 2 

closed-loop poles in the right-half s plane



Relative Stability Analysis

Relative Stability

• The degree of stability of a stable system, hence we can think of different 

design strategies to improve the stability of the control systems

• The closer the 𝐺 𝑗𝜔 𝐻(𝑗𝜔) locus comes to encircling the point (−1 + 𝑗0), 
the more oscillatory is the system response

• Hence, the proximity of the open-loop frequency response (𝐺 𝑗𝜔 𝐻(𝑗𝜔)
locus) to the point (−1 + 𝑗0) on the GH-plane (or F(s)-plane) is a measure 

of the relative stability of a closed-loop system

• It is a common practice to represent the proximity in terms of phase 

margin and gain margin
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Relative Stability Analysis

Gain Margin

• It is defined as the additional gain required to make the system just unstable

• The amount by which the magnitude of 𝐺 𝑗𝜔 𝐻(𝑗𝜔) must be increased in 

order to be equal to 1 when ∠𝐺 𝑗𝜔 𝐻 𝑗𝜔 = −180°

• Phase crossover frequency (𝜔𝑝𝑐) - the frequency at which 

∠𝐺 𝑗𝜔 𝐻 𝑗𝜔 = −180°
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𝐺.𝑀.=
1

𝐺 𝑗𝜔 𝐻(𝑗𝜔)
𝐺 𝑗𝜔 𝐻(𝑗𝜔)

𝐺.𝑀. (dB) = −20 log 𝐺 𝑗𝜔 𝐻(𝑗𝜔)

𝜔𝑝𝑐

Typical Degree Values

G.M. = 1.5 ~ 4.0 (3.5 ~ 12 dB)



Relative Stability Analysis

Phase Margin

• It is defined as the additional phase lag required to make the system just 
unstable

• The additional phase lag required make ∠𝐺 𝑗𝜔 𝐻 𝑗𝜔 = −180° at the 
frequency for which the magnitude of 𝐺 𝑗𝜔 𝐻(𝑗𝜔) is equal to 1

• Gain crossover frequency (𝜔𝑔𝑐) - the frequency at which |𝐺 𝑗𝜔 𝐻 𝑗𝜔 | =
1
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𝑃.𝑀.= 𝛾 = 180° + ∠𝐺 𝑗𝜔 𝐻(𝑗𝜔)

γ = 180° + 𝜙

𝜔𝑔𝑐

Typical Degree Values

P.M. = 𝛾 = 30° ~ 60°

𝛾

|𝐺 𝑗𝜔 𝐻 𝑗𝜔 | = 1

𝜙



Relative 

Stability 

Analysis
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(a) Bode diagrams

(b) Polar Plots

(c) Log-magnitude 

versus-phase plots



Example 8

Obtain the phase and gain margins of the system shown below for the two cases where 

K = 10 and K = 100.

Answer:

You can either draw the Bode diagrams, polar plot or Nichols plot of the open-loop

frequency response for determining the G.M. and P.M. with the following magnitude 

and phase equations.
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𝐺 𝑗𝜔 =
𝐾

𝑗𝜔 𝑗𝜔 + 1 𝑗𝜔 + 5

𝐺 𝑗𝜔 dB = 20 log𝐾 − 20 log𝜔 − 20 log 1 + 𝜔2 − 20 log 52 +𝜔2

∠𝐺 𝑗𝜔 ° = −90°− tan−1𝜔 − tan−𝟏
𝜔

5



Example 8
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𝐺 𝑗𝜔 dB = 20 log𝐾 − 20 log𝜔 − 20 log 1 + 𝜔2 − 20 log 52 + 𝜔2

∠𝐺 𝑗𝜔 ° = −90°− tan−1𝜔 − tan−𝟏
𝜔

5

K = 10 K = 100

𝝎 (Rad/s) Magnitude (dB) Phase Magnitude (dB) Phase

0.2 19.823 −103.6 39.823 −103.6

0.5 11.029 −122.28 31.029 −122.28

1 2.84 −146.31 22.84 −146.31

2 −7.634 −175.24 12.37 −175.24

5 −25.119 −213.7 −5.119 −213.7

6 −29.1 −220.73 −9.1 −220.73

7 −32.584 −226.33 −12.584 −226.33

8 −35.685 −230.87 −15.685 −230.87

10 −41.01 −237.72 −21.01 −237.72



Example 8

Answer:

46

The phase and gain margins can easily be obtained from the Bode diagram.

The phase and gain margins for K = 10 are P.M. = 21° and G.M. = +8 dB

Therefore, the system gain may be increased by 8 dB before the instability occurs.

The phase and gain margins for K = 100 are P.M. = –30° and G.M. = –12 dB

Thus, the system is stable for K = 10, but unstable for K = 100.



Example 8

Answer:

Beside graphically solved the problem, we can use analytical method as below.

Gain Margin

When system phase, 𝜙 = −180, and put it into the phase equation, we can find the 

phase crossover frequency, 𝜔𝑝𝑐,

Since                                                            , hence
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𝐺 𝑗𝜔 =
𝐾

𝑗𝜔 𝑗𝜔 + 1 𝑗𝜔 + 5

∠𝐺 𝑗𝜔 ° = −90°− tan−1𝜔 − tan−𝟏
𝜔

5
𝐺(𝑗𝜔) =

𝐾

𝜔 1 + 𝜔2 52 + 𝜔2

−180° = −90°− tan−1𝜔 − tan−𝟏
𝜔

5

90° = tan−1𝜔 + tan−𝟏
𝜔

5

∞ =
𝜔 +

𝜔
5

1 − 𝜔
𝜔
5

tan−1 𝑋 + tan−1 𝑌 = tan−1
𝑋 + 𝑌

1 − 𝑋𝑌



Example 8

Answer:

Gain Margin

The equation is equal to infinity if and only if the denominator is equal to zero, we have

1 −
𝜔2

5
= 0 ⇒ 𝜔2 = 5 ⇒ 𝜔 = 2.236 rad/s

The phase crossover frequency, 𝜔𝑝𝑐 = 2.236 rad/s.  Substitute this into the magnitude 

equation with K = 10, we have

𝐺(𝑗𝜔) =
10

2.236 1 + 2.236 2 52 + 2.236 2
= 0.3333

𝐺(𝑗𝜔) = −20 log 0.3333 = −9.543 dB

G.M. = 0 − (−9.543) = 9.543 dB
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Example 8
Answer:

Phase Margin

When system magnitude, 𝐺(𝑗𝜔) = 1 or 0 dB, and put it into the magnitude equation, we 

can find the gain crossover frequency, 𝜔𝑔𝑐, for K = 10,

1 =
10

𝜔 1 + 𝜔2 52 + 𝜔2
⇒ 𝜔2 1 + 𝜔2 25 + 𝜔2 = 10

So, the equation will be,   𝜔6 + 26𝜔4 + 25𝜔2 − 100 = 0. Substitute 𝑎 = 𝜔2 into the 

equation, we have

𝑎3 + 26𝑎2 + 25𝑎 − 100 = 0

By the solving the equation, we have 𝑎 = −2.675 (rejected), 𝑎 = −24.83 (rejected) and 

𝑎 = 1.506.  Hence, 𝜔2 = 1.506, 𝜔 = 𝜔𝑔𝑐 = 1.227 rad/s

Put 𝜔𝑔𝑐 = 1.227 rad/s into ∠𝐺 𝑗𝜔 = −90° − tan−1𝜔 − tan−1
𝜔

5
,

∠𝐺 𝑗𝜔 = −90° − tan−1 1.227 − tan−1
1.227

5
= −154.61°

P.M. = 180 + (−154.61) = 25.39
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Example 8
Answer:

Repeat the same procedures for K = 100.

Gain Margin

Since the change of gain K will not affect the phase equation and hence the phase crossover 

frequency, 𝜔𝑝𝑐 = 2.236 rad/s.  So, the system gain is,

𝐺(𝑗𝜔) =
100

2.236 1 + 2.236 2 52 + 2.236 2
= 3.3335

𝐺(𝑗𝜔) = 20 log 3.335 = 10.46 dB G.M. = 0 −10.46 = −10.46 dB

Phase Margin

We need to recalculate the gain crossover frequency,  𝜔𝑔𝑐, for the new gain K.

1 =
100

𝜔 1 + 𝜔2 52 +𝜔2

Hence, we have 𝜔𝑔𝑐 = 3.907 rad/s. Put 𝜔𝑔𝑐 = 3.907 rad/s into ∠𝐺 𝑗𝜔 , we have 

∠𝐺 𝑗𝜔 = −90° − tan−1 3.907 − tan−1
3.907

5
= −203.65°

P.M. = 180 + (−203.65) = −23.65

50


