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Control System Analysis

Unit 3

Transient and Steady-state Responses Analysis

(Reference: [1] chapter 5-1 to 5-3, 5-7 to 5-8 )
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Introduction

• First step in analyzing a control system was to derive a mathematical 

model of the system [Unit 2]

• Establish a basis of comparison of performance of various control 

systems

• Many design criteria are based on the response to such test signals 

or on the response of systems to changes in initial conditions

• Commonly used test input signals are step functions, ramp

functions, acceleration functions, impulse functions, sinusoidal 

functions, and white noise

• Once a control system is designed on the basis of test signals, the 

performance of the system in response to actual inputs is generally 

satisfactory
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Introduction

Transient Response and Steady-State Response
• Transient Response, 𝑐𝑡𝑟(𝑡): from the initial state to the final state

• Steady-state Response, 𝑐𝑠𝑠(𝑡): system output behaves as 𝑡 ⟶ ∞
• The system (total) response, c(t),

𝑐 𝑡 = 𝑐𝑡𝑟(𝑡) + 𝑐𝑠𝑠(𝑡)

Absolute Stability, Relative Stability, and Steady-State Error
• The most important characteristic of the dynamic behavior of a control system is 

absolute stability – that is, whether the system is stable or unstable.

• Stable: if the output eventually comes back to its equilibrium state when the system 
is subjected to an initial condition.

• Critically stable: if oscillations of the output continues forever

• Unstable: if the output diverges without bound from its equilibrium state when it is 
subjected to an initial condition.

• If the output of a system at steady state does not exactly agree with the input, the 
system is said to have steady-state error
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First-Order Systems

• Typical first-order systems include RC circuit, thermal system or the like
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𝐶(𝑠)

𝑅(𝑠)
=

1

𝑇𝑠 + 1



First-Order Systems

Unit-Step Response

• The Laplace transform the unit-step function is 1/s

𝐶 𝑠 =
1

𝑇𝑠 + 1

1

𝑠
=
1

𝑠
−

1

𝑠 +
1
𝑇

• Taking inverse Laplace transform, we have,

𝑐 𝑡 = 1 − 𝑒
−

1
𝑇 𝑡

, for 𝑡 ≥ 0

• At 𝑡 = 0, 𝑐 𝑡 = 0

• At 𝑡 ⟶ ∞, 𝑐 𝑡 = 1

• At 𝑡 = 𝑇, 𝑐 𝑡 = 1 − 𝑒−1 = 0.632 = 63.2%

• T is called time constant. The smaller T, the faster the system response
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First-Order Systems

Unit-Step Response

• Although the steady state is reached mathematically only after an infinite 

time. In practice, however, a reasonable estimate of the response time is the 

length of time the response curve needs to reach and stay within the 2% 

line of the final value, or 4 time constants
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𝑐 𝑡 = 1 − 𝑒
−

1
𝑇 𝑡

, for 𝑡 ≥ 0

ቤ
𝑑𝑐

𝑑𝑡
𝑡=0

= ቤ
1

𝑇
𝑒−

𝑡
𝑇

𝑡=0

=
1

𝑇

• The slope of the tangent line at t = 0, 

• It decreases monotonically from 1 / 

T at t = 0 to zero at t = 



First-Order Systems

Unit-Ramp Response

• The Laplace transform the unit-ramp

function is 1/s2

𝐶 𝑠 =
1

𝑇𝑠 + 1

1

𝑠2
=

1

𝑠2
−
𝑇

𝑠
+

𝑇2

𝑇𝑠 + 1

• Taking inverse Laplace transform, we have,

𝑐 𝑡 = 𝑡 − 𝑇 + 𝑇𝑒
−

1
𝑇 𝑡

, for 𝑡 ≥ 0

• The error signal,

• At 𝑡 → ∞, 𝑒 ∞ = 𝑇
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The error in following the unit-ramp input is equal to T for sufficiently large t

𝑒 𝑡 = 𝑟 𝑡 − 𝑐 𝑡 = 𝑇 1 − 𝑒−𝑡/𝑇



First-Order Systems

Unit-Impulse Response

• The Laplace transform the unit-impulse

function is 1,

𝐶 𝑠 =
1

𝑇𝑠 + 1
1

• Taking inverse Laplace transform, we have,

𝑐 𝑡 =
1

𝑇
𝑒
−

1
𝑇 𝑡

, for 𝑡 ≥ 0
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An Important Property of Linear Time-Invariant Systems
• The response to the derivative of an input signal can be obtained by differentiating the 

response of the system to the original signal

• The response to the integral of the original signal can be obtained by integrating the 

response of the system to the original signal and by determining the integration 

constant from the zero-output initial condition



Second-Order Systems

• Consider a servo system as an example of a second-order system
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• The servo system shown consists of 

a proportional controller and load 

elements. 

• Control the output position c in 

accordance with the input position r

• The transfer function is then,

𝐽 ሷ𝑐 + 𝐵 ሶ𝑐 = 𝑇

Inertia Torque Viscous-friction

𝐽𝑠2𝐶 𝑠 + 𝐵𝑠𝐶 𝑠 = 𝑇(𝑠)
𝐶(𝑠)

𝑇(𝑠)
=

1

𝐽𝑠2 + 𝐵𝑠



Second-Order Systems

• The closed-loop transfer function with the gain (K) of the proportional controller, 

• We can rewrite the closed-loop transfer function as,

• It is convenient to write, 

• where  is called the attenuation; 𝜔𝑛, the undamped natural frequency; and 𝜁, the damping 

ratio of the system.  The damping ratio 𝜁 is the ratio of the actual damping B to the critical 

damping 𝐵𝑐 = 2 𝑗𝐾 or
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𝐶(𝑠)

𝑅(𝑠)
=

𝐾

𝐽𝑠2 + 𝐵𝑠 + 𝐾
=

𝐾
𝐽

𝑠2 +
𝐵
𝐽
𝑠 +

𝐾
𝐽

𝐶(𝑠)

𝑅(𝑠)
=

𝐾
𝐽

𝑠 +
𝐵
2𝐽

+
𝐵
2𝐽

2

−
𝐾
𝐽

𝑠 +
𝐵
2𝐽
−

𝐵
2𝐽

2

−
𝐾
𝐽

𝐾

𝐽
= 𝜔𝑛

2 ,
𝐵

𝐽
= 2𝜁𝜔𝑛 = 2𝜎

𝜁 =
𝐵

𝐵𝑐
=

𝐵

2 𝐽𝐾



Second-Order Systems

• In terms of 𝜁 and 𝜔𝑛, the system shown below can be modified and the 

closed-loop transfer function C(s) / R(s) can be written as, 

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2

• This form is called the standard form of the second-order system

• The dynamic behavior of the second-order system can then be described in 

terms of two parameters 𝜁 and 𝜔𝑛
I. If (0 < 𝜁 < 1): the system is underdamped

II. If (𝜁 = 1): the system is critically damped

III. If (𝜁 > 1): the system is overdamped

IV. If (𝜁 = 0): the transient response does not die out
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Second-Order Systems
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Step response of a second-order system with different damping ratio



Second-Order Systems

(I) Underdamped Case (𝟎 < 𝜻 < 𝟏) :

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

𝑠 + 𝜁𝜔𝑛 + 𝑗𝜔𝑑 𝑠 + 𝜁𝜔𝑛 − 𝑗𝜔𝑑

• where 𝜔𝑑 = 𝜔𝑛 1 − 𝜁2 : the damped natural frequency

• For a unit-step input, C(s) can be written

𝐶 𝑠 =
1

𝑠

𝜔𝑛
2

𝑠 + 𝜁𝜔𝑛 + 𝑗𝜔𝑑 𝑠 + 𝜁𝜔𝑛 − 𝑗𝜔𝑑
=
1

𝑠
−

𝑠 + 𝜁𝜔𝑛

𝑠 + 𝜁𝜔𝑛
2 + 𝜔𝑑

2 −
𝜁𝜔𝑛

𝑠 + 𝜁𝜔𝑛
2 + 𝜔𝑑

2

• From the Laplace Transform Table, the output in time domain is,

𝑐 𝑡 = 1 −
𝑒−𝜁𝜔𝑛𝑡

1 − 𝜁2
sin(𝜔𝑑𝑡 + 𝜙)
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damping oscillation

, where 𝜙 = cos−1 𝜁



Second-Order Systems

(I) Underdamped Case (𝟎 < 𝜻 < 𝟏) (continued) :

• The error signal, 

𝑒 𝑡 = 𝑟 𝑡 − 𝑐 𝑡 =
𝑒−𝜁𝜔𝑛𝑡

1−𝜁2
sin(𝜔𝑑𝑡 + 𝜙)

• At steady-state (𝑡 ⟶ ∞), no errors exists between the input and output

• If the damping ratio (𝜁) is zero, the response becomes undamped,

𝑐 𝑡 = 1 −
𝑒−0𝜔𝑛𝑡

1 − 02
sin(𝜔𝑛 1 − 02𝑡 + 90°) = 1 − cos𝜔𝑛𝑡 , for 𝑡 ≥ 0

• From the above equation, we see that 𝜔𝑛 represents the undamped natural 
frequency at which the system output would oscillate if the damping is zero 

• Since 𝜔𝑑 = 𝜔𝑛 1 − 𝜁2 , 𝜁 ↑⟹ 𝜔𝑑 ↓. The response becomes overdamped and will 

not oscillate if 𝜁 > 1
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Second-Order Systems

(II) Critically Damped Case (𝜻 = 𝟏) :

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2

𝜔𝑛
2

𝑠 + 𝜔𝑛
2

• For a unit-step input, c(t) will be

𝐶 𝑠 =
1

𝑠

𝜔𝑛
2

𝑠 + 𝜔𝑛
2

𝑐 𝑡 = 1 − 𝑒−𝜔𝑛𝑡 1 + 𝜔𝑛𝑡 , 𝑡 ≥ 0
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𝜁 = 1

Inverse Laplace 

Transform



Second-Order Systems

(III) Overdamped Case (𝜻 > 𝟏) :

• C(s) can be written with R(s) = 1 / s,

𝐶 𝑠 =
1

𝑠

𝜔𝑛
2

𝑠 + 𝜁𝜔𝑛 + 𝜔𝑛 𝜁2 − 1 𝑠 + 𝜁𝜔𝑛 − 𝜔𝑛 𝜁2 − 1

• Taking inverse Laplace transform, 

𝑐 𝑡

= 1 +
1

2 𝜁2 − 1 𝜁 + 𝜁2 − 1
𝑒
− 𝜁+ 𝜁2−1 𝜔𝑛𝑡

−
1

2 𝜁2 − 1 𝜁 − 𝜁2 − 1
𝑒
− 𝜁− 𝜁2−1 𝜔𝑛𝑡
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Second-Order Systems

• An underdamped system with 𝜁 between 0.5 and 0.8 gets close to the final value 

more rapidly than a critically damped or overdamped system

• Among the systems responding without oscillation, a critically damped system 

exhibits the fastest response

• An overdamped system is always sluggish (moving slowly) in responding to any 

inputs
18



Unit-step Response

Definition of Transient-response Specifications
• The performance characteristics of a control system are specified in terms of the transient 

response to a unit-step input, since it is easy to generate

• For comparing transient responses, zero initial condition will be used

• In specifying the transient-response characteristics of a control system to a unit-step input, it 
is common to specify the following:

19

1. Delay time, 𝑡𝑑:  Time required for the 
response to reach half the final value the very 
first time

2. Rise time, 𝑡𝑟: Time required for the response 
to rise from 10% to 90%, 5% to 95%, or 0% to 
100% of its final value

3. Peak time, 𝑡𝑝: Time required for the response 

to reach the first peak of the overshoot

4. Settling time, 𝑡𝑠: Time required for the 
response curve to reach and stay within a 
range about ±2% to ± 5% of its final value

5. Maximum (percent ) overshoot, 𝑀𝑝: 

Maximum peak value of the response curve  
measured from unity

𝑀𝑝 % =
𝑐 𝑡𝑝 − 𝑐(∞)

𝑐(∞)
× 100%



Unit-step Response

Second-order Systems and Transient-response Specifications

• Rise time, 𝒕𝒓 (0% to 100%)

𝑐 𝑡𝑟 = 1 ⟹ 1 −
𝑒−𝜁𝜔𝑛𝑡𝑟

1 − 𝜁2
sin(𝜔𝑑𝑡𝑟 + 𝜙) = 1

• Since 
𝑒−𝜁𝜔𝑛𝑡𝑟

1−𝜁2
≠ 0, we can obtain the following equation,

sin(𝜔𝑑𝑡𝑟 + tan−1
1 − 𝜁2

𝜁
) = 0 ⟹ tan𝜔𝑑𝑡𝑟 = −

1 − 𝜁2

𝜁

• As 𝜔𝑑 = 𝜔𝑛 1 − 𝜁2 and 𝜁𝜔𝑛 = 𝜎, we have

tan𝜔𝑑𝑡𝑟 = −
1 − 𝜁2

𝜁
= −

𝜔𝑑

𝜎

Then, the rise time is,

𝑡𝑟 =
1

𝜔𝑑
tan−1

𝜔𝑑

−𝜎
=
𝜋 − 𝛽

𝜔𝑑

20



Unit-step Response

Second-order Systems and Transient-response Specifications

• Peak time, 𝒕𝒑
– Obtained by differentiating c(t) with respect to time and letting this derivative equal zero

𝑑𝑐(𝑡)

𝑑𝑡
= 𝜁𝜔𝑛𝑒

−𝜁𝜔𝑛𝑡 cos𝜔𝑑𝑡 +
𝜁

1 − 𝜁2
sin𝜔𝑑𝑡 + 𝑒−𝜁𝜔𝑛𝑡 𝜔𝑑 sin𝜔𝑑𝑡 +

𝜁𝜔𝑑

1 − 𝜁2
cos𝜔𝑑𝑡

• The cosine terms cancel each other, 
𝑑𝑐(𝑡)

𝑑𝑡
, evaluated at 𝑡 = 𝑡𝑝, can be simplified to,

ቤ
𝑑𝑐(𝑡)

𝑑𝑡
𝑡=𝑡𝑝

= 0 = sin𝜔𝑑𝑡𝑝
𝜔𝑛

1 − 𝜁2
𝑒−𝜁𝜔𝑛𝑡

• Hence, sin 𝜔𝑑𝑡𝑝 = 0 or 𝜔𝑑𝑡𝑝 = 0, 𝜋, 2𝜋, 3𝜋, …

• Since the peak time corresponds to the first peak overshoot,

𝑡𝑝 =
𝜋

𝜔𝑑

21

𝑐 𝑡 = 1 − 𝑒−𝜁𝜔𝑛𝑡 cos𝜔𝑑𝑡 +
𝜁

1 − 𝜁2
sin𝜔𝑑𝑡

corresponds to one-half cycle of the 

frequency of damped oscillation

𝜔𝑑 = 𝜔𝑛 1 − 𝜁2



Unit-step Response

Second-order Systems and Transient-response Specifications

• Maximum Overshoot, 𝑴𝒑

– It occurs at 𝑡𝑝 =
𝜋

𝜔𝑑
. If the final output value is unity, then

𝑀𝑝 = 𝑐 𝑡𝑝 − 1 = −𝑒
−𝜁𝜔𝑛

𝜋

𝜔𝑑 cos𝜔𝑑
𝜋

𝜔𝑑
+

𝜁

1−𝜁2
sin𝜔𝑑

𝜋

𝜔𝑑
= 𝑒

−
𝜁

1−𝜁2
𝜋

• The maximum percent overshoot is 𝑒

−
𝜁

1−𝜁2
𝜋

× 100%

22

𝑐 𝑡 = 1 − 𝑒−𝜁𝜔𝑛𝑡 cos𝜔𝑑𝑡 +
𝜁

1 − 𝜁2
sin𝜔𝑑𝑡

𝜔𝑑 = 𝜔𝑛 1 − 𝜁2



Unit-step Response

Second-order Systems and Transient-response Specifications

• Settling time, 𝒕𝒔
– Time corresponding to a  ±2% or ±5% tolerance band

• The envelope curves of the transient response, 
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1 ±
𝑒−𝜁𝜔𝑛𝑡

1 − 𝜁2

• Hence, the settling time is commonly defined 

as,

𝑡𝑠 = 4𝑇 =
4

𝜁𝜔𝑛

𝑡𝑠 = 3𝑇 =
3

𝜁𝜔𝑛

T : Time constant of the 

envelope curves

(2% criterion)

(5% criterion)



Example 1
Consider the system shown below, where 𝜁 = 0.6 and 𝜔𝑛 = 5 rad/s. Find the rise time 
𝑡𝑟 , peak time 𝑡𝑝 , maximum overshoot 𝑀𝑝 , and settling time 𝑡𝑠 when the system is 

subjected to a unit-step input. 

Answer:

𝜔𝑑 = 5 1 − 0.62 = 4 , 𝜎 = 0.6 5 = 3

𝛽 = tan−1
𝜔𝑑

𝜎
= tan−1

4

3
= 0.9273 rad

Rise time, 𝑡𝑟 =
𝜋−𝛽

𝜔𝑑
=

𝜋−0.9273

4
= 0.554 s

Peak time, 𝑡𝑝 =
𝜋

𝜔𝑑
=

𝜋

4
= 0.785 s

Maximum overshoot, 𝑀𝑝 = 𝑒

−
𝜁

1−𝜁2
𝜋

= 𝑒
−

0.6

1−0.62
𝜋
= 0.0948

The maximum percent overshoot is thus 9.48%

Settling time, 𝑡𝑠 =
4

𝜁𝜔𝑛
=

4

(0.6)(5)
= 1.333 s  (for 2% criterion)

𝑡𝑠 =
3

𝜁𝜔𝑛
=

3

(0.6)(5)
= 1 s  (for 5% criterion)
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System with Velocity Feedback

• Revisited the servo system in p.10

• The derivative of the output signal can be used to improve system performance

• In obtaining the derivative of the output position signal, it is desirable to use a 

tachometer instead of physically differentiating the output signal

25

𝐶(𝑠)

𝑅(𝑠)
=

𝐾

𝐽𝑠2 + 𝐵𝑠 + 𝐾• The velocity signal, together with the positional 

signal, is fed back to the input to produce the 

actuating error signal

• The transfer function of the servo system with 

velocity-feedback constant 𝐾ℎ can be written as,
𝐶(𝑠)

𝑅(𝑠)
=

𝐾

𝐽𝑠2 + 𝐵 + 𝐾𝐾ℎ 𝑠 + 𝐾

• The new damping ratio becomes, 

𝜁 =
𝐵 + 𝐾𝐾ℎ

2 𝐾𝐽

• The undamped natural frequency is unchanged,

𝜔𝑛 = 𝐾/𝐽

𝜁 =
𝐵

2 𝐽𝐾



Example 2
For the system shown below, determine the values of gain K and velocity-feedback 

constant 𝐾ℎ so that the maximum overshoot in the unit-step response is 0.2 and the 

peak time is 1 sec.  With these values of K and 𝐾ℎ, obtain the rise time and settling time 

(2%). Assume that 𝐽 = 1 kgm2 and B = 1 Nm/rad/sec.

Answer:

26

𝑀𝑝 = 𝑒
−

𝜁

1−𝜁2
𝜋

= 0.2 →

𝑡𝑝 =
𝜋

𝜔𝑑
= 1 ∴ 𝜔𝑑 = 𝜋

ln(𝑒
−

𝜁

1−𝜁2
𝜋

) = ln 0.2

−
𝜁

1 − 𝜁2
𝜋 = ln 0.2 → −

𝜁

1 − 𝜁2
𝜋

2

= ln 0.2 2

𝜁2𝜋2

1 − 𝜁2
= ln 0.2 2 → 𝜁2𝜋2 = 1 − 𝜁2 ln 0.2 2 → 𝜁2 𝜋2 + (ln 0.2)2 = ln 0.2 2

𝜁 = ±
ln 0.2 2

𝜋2 + ln 0.2 2
= 0.4559 or − 0.4559 (reject) 𝜁 =

ln𝑀𝑃
2

𝜋2 + ln𝑀𝑃
2



Example 2

Answer:

27

𝐶(𝑠)

𝑅(𝑠)
=

𝐾

𝐽𝑠2 + 𝐵 + 𝐾𝐾ℎ 𝑠 + 𝐾

𝜔𝑛 =
𝜔𝑑

1 − 𝜁2
=

𝜋

1 − 0.45592
= 3.53 rad/s

𝜔𝑛 =
𝐾

𝐽
=

𝐾

1
= 3.53 → 𝑲 = 𝟏𝟐. 𝟒𝟔 𝐍𝐦

𝜁 =
𝐵 + 𝐾𝐾ℎ

2 𝐾𝐽
→ 0.4559 =

1 + 12.46𝐾ℎ

2 (12.46)(1)
→ 𝑲𝒉 = 𝟎. 𝟏𝟕𝟖 𝐬

Rise Time

Settling Time 

(2%)

𝒕𝒓 =
𝜋 − 𝛽

𝜔𝑑
=
𝜋 − cos−1 𝜁

𝜋
=
𝜋 − cos−1 0.4559

𝜋
= 𝟎. 𝟔𝟓𝟏 𝐬

𝒕𝒔 𝟐% =
4

𝜁𝜔𝑛
=

4

(0.4556)(3.53)
= 𝟐. 𝟒𝟖𝟔 𝐬



Unit-Impulse Response

• The unit-impulse response of the second-order system shown below is,

𝐶 𝑠 =
𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2

• Its inverse Laplace transform is, 

1. 𝟎 ≤ 𝜻 < 𝟏: 𝑐 𝑡 =
𝜔𝑛

1−𝜁2
𝑒−𝜁𝜔𝑛𝑡 sin𝜔𝑛 1 − 𝜁2𝑡

2. 𝜻 = 𝟏: 𝑐 𝑡 = 𝜔𝑛
2𝑡𝑒−𝜔𝑛𝑡

3. 𝜻 > 𝟏:

𝑐 𝑡 =
𝜔𝑛

2 𝜁2 − 1
𝑒
− 𝜁− 𝜁2−1 𝜔𝑛𝑡 −

𝜔𝑛

2 𝜁2 − 1
𝑒
− 𝜁+ 𝜁2−1 𝜔𝑛𝑡
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• For the critically damped and overdamped cases, the 

responses is always positive or zero

• For the underdamped case, the response oscillates about 

zero and takes both positive and negative values



Steady-State Errors in Feedback Control Systems

• Any physical control system inherently suffers steady-state error in response to 
certain types of inputs, e.g. it may have no steady-state error to a step input, but 
may exhibit nonzero steady-state error to a ramp input  depends on the type of 
open-loop transfer function of the system

Steady-State Errors
• Consider the system beside, the transfer function is,

𝐶(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)

1 + 𝐺 𝑠 𝐻(𝑠)

• The transfer function between the error signal e(t) and the input signal r(t) is,
𝐸(𝑠)

𝑅(𝑠)
=
𝑅 𝑠 − 𝐻 𝑠 𝐶(𝑠)

𝑅(𝑠)
= 1 −

𝐻(𝑠)𝐶 𝑠

𝑅 𝑠
=

1

1 + 𝐺 𝑠 𝐻(𝑠)

• The steady-state error can be computed by using the final-value theorem,

𝐸 𝑠 =
1

1 + 𝐺 𝑠 𝐻(𝑠)
𝑅 𝑠 𝑒𝑠𝑠 = lim

𝑡→∞
𝑒(𝑡) = lim

𝑠→0
𝑠𝐸(𝑠) = lim

𝑠→0

𝑠𝑅(𝑠)

1 + 𝐺 𝑠 𝐻(𝑠)

29



Steady-State Errors in Unity-Feedback Control Systems

Static Position Error Constant 𝐾𝑝
• The steady-state error of the system for a unit-step input is,

𝑒𝑠𝑠 = lim
𝑠→0

𝑠

1 + 𝐺 𝑠 𝐻 𝑠

1

𝑠
=

1

1 + 𝐺 0 𝐻(0)

• The static position error constant 𝐾𝑝 is defined by, 

𝐾𝑝 = lim
𝑠→0

𝐺 𝑠 𝐻(𝑠) = 𝐺 0 𝐻(0)

• Thus, the steady-state error in terms of 𝐾𝑝 is given by, 𝑒𝑠𝑠 =
1

1+𝐾𝑝

Static Velocity Error Constant 𝐾𝑣
• The steady-state error of the system with a unit-ramp input is,

𝑒𝑠𝑠 = lim
𝑠→0

𝑠

1 + 𝐺 𝑠 𝐻 𝑠

1

𝑠2
= lim

𝑠→0

1

𝑠𝐺 𝑠 𝐻(𝑠)

• The static velocity error constant 𝐾𝑣 is defined by, 𝐾𝑣 = lim
𝑠→0

𝑠𝐺 𝑠 𝐻(𝑠)

• Thus, the steady-state error in terms of 𝐾𝑣 is given by,   𝑒𝑠𝑠 =
1

𝐾𝑣
30



Static Acceleration Error Constant 𝐾𝑎
• The steady-state error of the system for a unit-parabolic input (or acceleration 

input) is,

𝑟 𝑡 = ൞
𝑡2

2
, 𝑡 ≥ 0

0, 𝑡 < 0

𝑒𝑠𝑠 = lim
𝑠→0

𝑠

1 + 𝐺 𝑠 𝐻 𝑠

1

𝑠3
= lim

𝑠→0

1

𝑠2𝐺 𝑠 𝐻(𝑠)

• The static acceleration error constant 𝐾𝑎 is defined by,

𝐾𝑎 = lim
𝑠→0

𝑠2𝐺 𝑠 𝐻(𝑠)

• Thus, the steady-state error in terms of 𝐾𝑎 is given by, 𝑒𝑠𝑠 =
1

𝐾𝑎

Steady-State Errors in Unity-Feedback Control Systems
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Summary

Steady-State Errors in Unity-Feedback Control Systems
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Step Input

𝒓 𝒕 = 𝟏
Ramp Input

𝒓 𝒕 = 𝒕
Acceleration Input 

𝒓 𝒕 = 𝒕𝟐/𝟐

Static Position Error 

Constant 𝐾𝑝
lim
𝑠→0

𝐺 𝑠 𝐻(𝑠) - -

Static Velocity Error 

Constant 𝐾𝑣
- lim

𝑠→0
𝑠𝐺 𝑠 𝐻(𝑠) -

Static Acceleration Error 

Constant 𝐾𝑠
- - lim

𝑠→0
𝑠2𝐺 𝑠 𝐻(𝑠)

Steady State Error 𝑒𝑠𝑠 1

1 + 𝐾𝑝

1

𝐾𝑣

1

𝐾𝑎



Find the steady state error for (a) a unit-step input; (b) a unit-ramp input; and (c) a unit 
parabolic input.

Answer:

(a)

𝐾𝑝 = lim
𝑠→0

𝐺 𝑠 𝐻(𝑠) = lim
𝑠→0

4(𝑠 + 2)

𝑠(𝑠 + 4)(𝑠 + 1)
= ∞ 𝑒𝑠𝑠 =

1

1 + 𝐾𝑝
= 0

(b)

𝐾𝑣 = lim
𝑠→0

𝑠𝐺 𝑠 𝐻(𝑠) = lim
𝑠→0

4𝑠(𝑠 + 2)

𝑠(𝑠 + 4)(𝑠 + 1)
= 2 𝑒𝑠𝑠 =

1

𝐾𝑣
= 0.5

(c)

𝐾𝑎 = lim
𝑠→0

𝑠2𝐺 𝑠 𝐻(𝑠) = lim
𝑠→0

4𝑠2(𝑠 + 2)

𝑠(𝑠 + 4)(𝑠 + 1)
= 0 𝑒𝑠𝑠 =

1

𝐾𝑎
= ∞

Example 3 
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𝑠 + 2

𝑠 + 4

4

𝑠(𝑠 + 1)

+

-

R(s) C(s)



Effects of Integral and Derivative Control Actions on 

System Performance

Integral Control Action

• In the integral control of a plant, the control signal — output signal from the 

controller — at any instant is the area under the actuating-error-signal curve up to 

that instant

• The control signal u(t) can have a nonzero value when the actuating error signal e(t) 

is zero as shown below

• This is impossible in the case of the proportional controller, since a nonzero control 

signal requires a nonzero actuating error signal as shown below

34

(a) Plots of e(t) and u(t) curves 

showing nonzero control signal 

(integral control)

(b) Plots of e(t) and u(t) curves 

showing zero control signal 

(proportional control)



Effects of Integral and Derivative Control Actions on 

System Performance

Proportional Control of Systems

• Consider the system shown beside, then

𝐺 𝑠 =
𝐾

𝑇𝑠 + 1
and

𝐶(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)

1 + 𝐺(𝑠)

𝐸(𝑠)

𝑅(𝑠)
= 1 −

𝐶 𝑠

𝑅 𝑠
=

1

1 + 𝐺(𝑠)

∴ 𝐸 𝑠 =
1

1 + 𝐺 𝑠
𝑅 𝑠 =

1

1 +
𝐾

𝑇𝑠 + 1

𝑅(𝑠) 𝐸 𝑠 =
𝑇𝑠 + 1

𝑇𝑠 + 1 + 𝐾

1

𝑠

• The steady-state error is, 

𝑒𝑠𝑠 = lim
𝑡→∞

𝑒(𝑡) = lim
𝑠→0

𝑠𝐸 𝑠 = lim
𝑠→0

𝑠
𝑇𝑠 + 1

𝑇𝑠 + 1 + 𝐾

1

𝑠
=

1

1 + 𝐾
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𝑅 𝑠 = 1/𝑠

A system without an integrator in the feedforward path always 

has a steady-state error (called “offset”) in the step response. 



Effects of Integral and Derivative Control Actions on 

System Performance
Integral Control of Systems
• Consider the system shown beside, then

𝐶(𝑠)

𝑅(𝑠)
=

𝐾
𝑠 𝑇𝑠 + 1

1 +
𝐾

𝑠(𝑇𝑠 + 1)

=
𝐾

𝑠 𝑇𝑠 + 1 + 𝐾

𝐸(𝑠)

𝑅(𝑠)
= 1 −

𝐶 𝑠

𝑅 𝑠
=

𝑠 𝑇𝑠 + 1

𝑠 𝑇𝑠 + 1 + 𝐾
⇒ 𝐸 𝑠 =

𝑠 𝑇𝑠 + 1

𝑠 𝑇𝑠 + 1 + 𝐾
𝑅(𝑠)

• The steady-state error for the unit-step response can be obtained by applying the 
final-value theorem,

∴ 𝑒𝑠𝑠 = lim
𝑠→0

𝑠𝐸 𝑠 = lim
𝑠→0

𝑠2 𝑇𝑠 + 1

𝑠 𝑇𝑠 + 1 + 𝐾

1

𝑠
= 0

• Integral control of the system thus eliminates the steady-state error in the response 
to the step input
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Example 4
Consider the system shown below.  The proportional controller delivers torque T to position the 
load element, which consists of moment of inertia (J) and viscous friction (b). Torque disturbance 
is denoted by D which is a step function of magnitude 𝑇𝑑 .  Determine the steady-state error if 
reference input is zero.

Answer:

Since R(s) = 0, there will be only one input

D(s). Hence the transfer function between 

C(s) and D(s) is,

𝐶(𝑠)

𝐷(𝑠)
=

1
𝑠(𝐽𝑠 + 𝑏)

1 +
1

𝑠(𝐽𝑠 + 𝑏)
𝐾𝑝

=
1

𝐽𝑠2 + 𝑏𝑠 + 𝐾
⟹ ∴

𝐸(𝑠)

𝐷(𝑠)
=
𝑅 𝑠 − 𝐶(𝑠)

𝐷(𝑠)
= −

𝐶 𝑠

𝐷 𝑠
= −

1

𝐽𝑠2 + 𝑏𝑠 + 𝐾

The steady-state error due to a step disturbance torque of magnitude 𝑇𝑑 is given by

𝑒𝑠𝑠 = lim
𝑠→0

𝑠𝐸(𝑠) = lim
𝑠→0

𝑠 −
1

𝐽𝑠2 + 𝑏𝑠 + 𝐾

𝑇𝑑
𝑠

= −
𝑇𝑑
𝐾
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Example 5

The proportional controller in Example 4 is now replaced by a proportional-plus-

integral controller as shown below.  Find the steady-state error of the system with the 

same condition of Example 4, i.e. 𝑅 𝑠 = 0 and 𝐷 𝑠 = 𝑇𝑑 / 𝑠.

Answer:

38

∴
𝐸(𝑠)

𝐷(𝑠)
= −

𝑇𝑖𝑠

𝐽𝑠 + 𝑏 𝑇𝑖𝑠
2 + 𝐾𝑝(𝑇𝑖𝑠 + 1)

𝐸 𝑠 = 𝑅 𝑠 − 𝐶(𝑠) → 𝐸 𝑠 = −𝐶(𝑠)

𝐸(𝑠)

𝐷(𝑠)
= −

𝐶 𝑠

𝐷 𝑠
= −

1
𝑠 𝐽𝑠 + 𝑏

1 + 𝐾𝑝 1 +
1
𝑇𝑖𝑠

1
𝑠 𝐽𝑠 + 𝑏

= −

1
𝑠(𝐽𝑠 + 𝑏)

𝑠2𝑇𝑖 𝐽𝑠 + 𝑏 + 𝐾𝑝(𝑇𝑖𝑠 + 1)

𝑇𝑖(𝐽𝑠 + 𝑏)𝑠2



Example 5

Answer:
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∴
𝐸(𝑠)

𝐷(𝑠)
= −

𝑇𝑖𝑠

𝑠 𝐽𝑠 + 𝑏 𝑇𝑖𝑠 + 𝐾𝑝(𝑇𝑖𝑠 + 1)
= −

𝑇𝑖𝑠

𝐽𝑇𝑖𝑠
3 + 𝑏𝑇𝑖𝑠

2 + 𝐾𝑝𝑇𝑖𝑠 + 𝐾𝑝

𝑒𝑠𝑠 = lim
𝑠→0

𝑠𝐸(𝑠) = lim
𝑠→0

𝑠 −
𝑇𝑖𝑠

𝐽𝑇𝑖𝑠
3 + 𝑏𝑇𝑖𝑠

2 + 𝐾𝑝𝑇𝑖𝑠 + 𝐾𝑝

𝑇𝑑
𝑠

Steady-state error 

𝑒𝑠𝑠 =
0

𝐾𝑝
= 0



Effects of Integral and Derivative Control Actions on 

System Performance

Derivative Control of Systems

• Derivative control action, when added to a proportional controller, obtaining a 

controller with high sensitivity

• It responds to the rate of change of the actuating error and can produce a significant 

correction before the magnitude of the actuating error becomes too large

• Derivative control thus anticipates the actuating error, initiates an early corrective 

action, and tends to increase the stability of the system

• Not affect the steady-state error directly, it adds damping to the system and thus 

permits the use of a larger value of the gain K, which will result in an improvement 

in the steady-state accuracy
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