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Introduction

 First step in analyzing a control system was to derive a mathematical
model of the system [Unit 2]

 Establish a basis of comparison of performance of various control
systems

« Many design criteria are based on the response to such test signals
or on the response of systems to changes in initial conditions

« Commonly used test input signals are step functions, ramp
functions, acceleration functions, impulse functions, sinusoidal
functions, and white noise

* Once a control system is designed on the basis of test signals, the
performance of the system in response to actual inputs is generally
satisfactory
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Introduction

Transient Response and Steady-State Response

» Transient Response, c;-(t): from the initial state to the final state
« Steady-state Response, ¢ (t): system output behaves as t — oo
» The system (total) response, c(t),

QE THE HONG KONG e e

c(t) = cer(£) + cs5(8)

Absolute Stability, Relative Stability, and Steady-State Error

The most important characteristic of the dynamic behavior of a control system is
absolute stability — that is, whether the system is stable or unstable.

- Stable: if the output eventually comes back to its equilibrium state when the system
IS subjected to an initial condition.

« Critically stable: if oscillations of the output continues forever

 Unstable: if the output diverges without bound from its equilibrium state when it is
subjected to an initial condition.

« If the output of a system at steady state does not exactly agree with the input, the
system is said to have steady-state error
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First-Order Systems

» Typical first-order systems include RC circuit, thermal system or the like

ZQ\ THE HONG KONG T
q b W

Rix) E(x) ] (%)
——- — i .
Is Ris) ] Cix)
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Cs) 1
R(s) Ts+1

wy (£) G = ty(t)
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First-Order Systems

Unit-Step Response
» The Laplace transform the unit-step function is 1/s

» Taking inverse Laplace transform, we have,

c(t) =1-— e_(%)t, fort >0
« Att=0,c(t)=0
e Att > oo, c(t) =1
e Att=T,c(t)=1—-e1=10.632=63.2%
» Tis called time constant. The smaller T, the faster the system response
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First-Order Systems
Unit-Step Response
| 1
dny  PET () =1— e_(T)t, fort >0
1
— 1
1 - » The slope of the tangent line att = 0,
0.632 dc 1 _t 1
o =—e T = —
e . £ ES a t=0 r t=0 !
S & x g » It decreases monotonically from 1/
l 1 l | Tatt=0tozeroatt=oo

[

0 r r T 4T 5T f

el

Although the steady state is reached mathematically only after an infinite
time. In practice, however, a reasonable estimate of the response time is the

length of time the response curve needs to reach and stay within the 2%
line of the final value, or 4 time constants
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First-Order Systems

Unit-Ramp Response o)
* The Laplace transform the unit-ramp "[”
function is 1/s2 o
I t-— Steady-state
c(s) 1 1 1 T . T2 i A ;’;
S) = = — — — - o
Ts+1)\s?) s s Ts+1 4?_ A
cif)
2T -
» Taking inverse Laplace transform, we have,
1
c(t)=t—T+ Te_(T)t, fort >0 —_e

« Theerrorsignal, e(t)=r()—c(t)=T(1—e )
e Att > 0, e(0) =T

The error in following the unit-ramp input is equal to T for sufficiently large t
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First-Order Systems
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Unit-lmpulse Response

« The Laplace transform the unit-impulse !
function is 1,

0o

» Taking inverse Laplace transform, we have,

1 /1
c(t) = ?e_(f)t, fort > 0 :

An Important Property of Linear Time-Invariant Systems

» The response to the derivative of an input signal can be obtained by differentiating the
response of the system to the original signal

» The response to the integral of the original signal can be obtained by integrating the
response of the system to the original signal and by determining the integration
constant from the zero-output initial condition
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Second-Order Systems
Consider a servo system as an example of a second-order system
The servo system shown consists of i o
: r o | ‘
a proportional controller and load ~—] * { )f} T ’

elements. 1

Control the output position c in
accordance with the input position r

Cis)

Ris) @ . Tis) |
- siJs + B)
Jc+Bc=T 1
Inertia Viscous-friction Torque
Riz) N @ . K | L"[‘.'.']
The transfer function is then, sUs +B)

C(s) _ 1
T(s) Js?+Bs

Js?C(s) + BsC(s) = T(s) »

10
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Second-Order Systems

« The closed-loop transfer function with the gain (K) of the proportional controller,
K

C(s) K 3 T
R(s) Js*+Bs+K . B _K
J7 ]
« We can rewrite the closed-loop transfer function as,
K
C(s) _ ]
R(s) 5 5
B B K B B K
S+Z+J(2_]) -7 S+Z_J(ﬁ) -7

=2{w, = 20

* ltis convenient to write, K
N2
] - a)n )

—| =

« where ois called the attenuation; w,,, the undamped natural frequency; and ¢, the damping
ratio of the system. The damping ratio ¢ is the ratio of the actual damping B to the critical

damping B, = 2,/jK or B B

B, - 2\/]—1( 11
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Second-Order Systems

* Interms of { and w,,, the system shown below can be modified and the
closed-loop transfer function C(s) / R(s) can be written as,

Ris)
C(s) wy,

R(s) 2+ 2{w,s+ w?

» This form is called the standard form of the second-order system

« The dynamic behavior of the second-order system can then be described in
terms of two parameters ¢ and w,,
. If (0 < < 1): the system is underdamped
I1. If (¢ = 1): the system is critically damped
1. 1f (¢ > 1): the system is overdamped
IV. If (¢ = 0): the transient response does not die out

12
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Second-Order Systems
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Step response of a second-order system with different damping ratio

T

/

I 1 I 1 1 I 1 I

underdamped

critically damped

R

v Toem—
,/,.'

/ overdamped

increase damping

13
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Second-Order Systems
(1) Underdamped Case (0 < {( < 1) :

C(s) wy,
R(s) B (s +{wy +jwg)(s + {wy, — jwg)

« where w; = wy+/1 — {2 : the damped natural frequency
« For a unit-step input, C(s) can be written

w? 1 s + (wy,
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{wn

1
C(s) =

« From the Laplace Transform Table, the output in time domain is,
—(wnt

e~

damping oscillation

c(t) =1-—

E(s+(wn+jwd)(s+5wn—jwd) s (s + {wy)? + w3 - (s + {wy)? + w3

sin(wgt + ¢) , where ¢ = cos™1¢

14
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Second-Order Systems

(1) Underdamped Case (0 < { < 1) (continued) :
* The error signal,

e_(w‘nt

e(t) =r(t) —c(t) = Niere

sin(wgt + @)

« At steady-state (t — o0), no errors exists between the input and output
« |If the damping ratio ({) is zero, the response becomes undamped,

c(t)=1—m

sin( w,v1— 0%t +90°) =1 — coswyt,fort =0

* From the above equation, we see that w,, represents the undamped natural
frequency at which the system output would oscillate if the damping is zero

* Since wy = wyy/1—7%,0T= wy L. The response becomes overdamped and will
not oscillate if { > 1

15
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Second-Order Systems

(11) Critically Damped Case ({ = 1) :

C(s) _ wy, ‘ Wn
R(s) s2+2{w,s + w? (s + w,)?

» For a unit-step input, c(t) will be

Inverse Laplace
2 Transform
1  w;

C(s) == ) c(t)=1-e " (1+wt), t>0

16
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Second-Order Systems

(111) Overdamped Case ({ > 1) :
» C(s) can be written with R(s) =1 /s,

Q THE HONG KONG Skt o b oo
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1 w2
C(s) =— -

S(s + {w,, + Wy (% — 1)(s+(a)n—a)m/52 — 1)

« Taking inverse Laplace transform,

c(t)
— 14+ 1 _(G‘/ﬁ)w"t
SRR O GE )
e~ (5T 1)ont

2 62—1(5—\/527—)

17
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Second-Order Systems

20
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* Anunderdamped system with ¢ between 0.5 and 0.8 gets close to the final value
more rapidly than a critically damped or overdamped system

« Among the systems responding without oscillation, a critically damped system
exhibits the fastest response

* Anoverdamped system is always sluggish (moving slowly) in responding to any
inputs

18
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Definition of Transient-response Specifications

» The performance characteristics of a control system are specified in terms of the transient
response to a unit-step input, since it is easy to generate

»  For comparing transient responses, zero initial condition will be used

* In specifying the transient-response characteristics of a control system to a unit-step input, it
Is common to specify the following:

QE THE HONG KONG St s ottt
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1. Delay time, t;: Time required for the
response to reach half the final value the very ) &
first time -
2. Rise time, t,: Time required for the response N /\ L 005
to rise from 10% to 90%, 5% to 95%, or 0% to “'--—--'1"'-":‘{“' - ﬁ-/ 0.0
100% of its final value l

3. Peak time, t,,: Time required for the response 05 bz
to reach the first peak of the overshoot

4. Settling time, t,: Time required for the

Allowable tolerance

response curve to reach and stay within a 0 -
range about +2% to + 5% of its final value *—!f!—’“
5. Maximum (percent ) overshoot, M,,:

Maximum peak value of the response curve
measured from unit
g c(tp) = (=)

100 =

X 100% 19
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Unit-step Response

Second-order Systems and Transient-response Specifications
* Rise time, t,. (0% to 100%)

ZQ\ THE HONG KONG el -
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e_zwntr

c(ty)) =1=>1————sin(wyt, +p) =1
J1 =2
) e—Swntr ) ) )
Since i + 0, we can obtain the following equation,
/1 — 72 /1 — 72
sin(wgyt, + tan™1 —() =0 = tanwgt, = _TC
e Aswy = wy/1—{?%and (w, = o, we have o

\/1—52 Wq .
tan wgyt, = —T — - ﬁ--- g

= | ik
Then, the rise time is, o ];5 if.r&\
1 _1 (Wa m—f I E
tr =—tan"! (=2) | N ’
Wq4 —0 Wq
— E:-.-"-"'-".".' —

20
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Unit-step Response

c(t) =1—e S@nt (cos wgt + Jli_(zsin wdt>
Second-order Systems and Transient-response Specifications
wa = wny/1 =2

Peak time, t,,
— Obtained by differentiating c(t) with respect to time and letting this derivative equal zero

de(®) _ {wpe 59t coswgyt + Lsin wat | +e 6Ot [ wysinwyt + (@ cos wyt
dt [1-¢2 [1-2¢2
The cosine terms cancel each other, ( ) , evaluated at t = t;,, can be simplified to,
dc(t) Wn
=0= (sin watp) e ~Swnt
At o=, J1-¢2

Hence, sin(wdtp) = 0 orwgt, = 0,7, 2x, 37, ...
Since the peak time corresponds to the first peak overshoot,

corresponds to one-half cycle of the
frequency of damped oscillation

21
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Unit-step Response

Second-order Systems and Transient-response Specifications
* Maximum Overshoot, M,,

— ltoccursatt, = wl . If the final output value is unity, then
d

[

Mp = C(tp) — 1= —e_(wn(w_d> (COS Wy (:)Td + 1_62 (:fd) — |e 1-C2

¢

T

« The maximum percent overshoot is e % 100%

c(t) =1—e$¥nt| coswyt + ¢ sinwgt
1-2

wg = wp/1 -2

22
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Unit-step Response

Second-order Systems and Transient-response Specifications
« Settling time, ¢,
— Time corresponding to a +2% or +5% tolerance band

» The envelope curves of the transient response,
T : Time constant of the

e_(a)nt el 4 envelope curves
1+ | ——
J1—272 ey
« Hence, the settling time is commonly defined
as,
t 4T —4
= = 0 1 H
s L, (2% criterion)
3 - 7 Jlf Ell" 1|: 4|;r [

ts = 3T = o (5% criterion) il

23
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Example 1

Consider the system shown below, where ¢ = 0.6 and w,, = 5 rad/s. Find the rise time
t, , peak time t,, , maximum overshoot M,, , and settling time ¢, when the system is
subjected to a unit-step input.

Ris) E(s)
Answer: —*@—

wg=5J1—-062=4,6=(0.6)(5) =3
w

4
L= tan"17d = tan"1§ = 0.9273 rad

izl

el

5[5+ 2wy

n—f  1m—0.9273

Rise time, t,. = ” = 0.554s
d
Peak time, t, = wl = % = 0.785s
d
-~ 0.6

Maximum overshoot, M,, = e 179 = ¢ Vim0e? = 0.0948
The maximum percent overshoot is thus 9.48%

Settling time, t, = C:) =% ;(5) = 1.333 s (for 2% criterion)
3 3

ty = = 1s (for 5% criterion)

lon  (06)5)
24
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System with Velocity Feedback

* Revisited the servo system in p.10
« The derivative of the output signal can be used to improve system performance
» In obtaining the derivative of the output position signal, it is desirable to use a

tachometer instead of physically differentiating the output signal C(s) K

» The velocity signal, together with the positional R(s) Js2+Bs+K
signal, is fed back to the input to produce the =) =
actuating error signal B ]

» The transfer function of the servo system with ¢ 2JJK

velocity-feedback constant K;, can be written as,

C(s) K LM Y - < —
R(s) Js?2+ (B+KKp)s+K '
* The new damping ratio becomes, K |t
_ B + KK,

B 2\/?] (a)

 The undamped natural frequency is unchanged, LN~ o C)

slJs + B+ KK
wy = K/J

25
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Example 2

For the system shown below, determine the values of gain K and velocity-feedback
constant K;, so that the maximum overshoot in the unit-step response is 0.2 and the
peak time is 1 sec. With these values of K and Kj,, obtain the rise time and settling time
(2%). Assume that /] = 1 kgm? and B = 1 Nm/rad/sec.

TT Ris) & v K - I Cis)
Answer: ty=—=1 fwg =T — (O e B
d |
- < /A B 1 i
M,=e V17 =02 > In(e V1=¢* )=1n0.2

2.2
- (In0.2)*> » {¢*n*=(1-7*)(n0.2)*> » {*(m*+ (In0.2)?) = (In0.2)?

(In 0.2)2 B (In Mp)?
C =% | nogyr = 04559 or — 04559 (reject) = |71 (n M,)2

26
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Answer: . _ o
0 . — 5 T T
Wy, = d_ _ = 3.53rad/s
J1-17% V1-10.45592 .
K |K
wnz\/:z\/;=3_53—>K:12.46Nm Cs) _ K
J R(s) Js?+ (B+KKp)s+K
B + KKy, 1+ 12.46K,,
{ = ——2 04559 = - K, =0.178s
2./KJ 2,/(12.46)(1)
. . _ _ -1 _ -1
Rise Time [ = T—p _ T —cos ¢ _ T — cos 0.4559 — 0.651s
Wyq VA T
Settling Time 4 4
(29%) s (290 = 7 = (0.4556)(3.53) y

27
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Unit-Impulse Response

« The unit-impulse response of the second-order system shown below is,

2
w
C(s) = - n > R(s) E(s) o2 Cls)
—— n
s+ 2¢wySs + wy, @" 55+ 2dan)

» Itsinverse Laplace transform is,

1 0<{<1 c(t)= \/;)__"zze_(“)nt sin w,4/1 — (%t
2 {=1: c(t) = wite ¥nt

3 ¢(>1: ; |
c(t) = _ On e_((_" 52_1)(‘)"1: —On e_(c+*’ Z2_1)(‘)"1: 08 {/’ N --§=i[].l
2,/{2 -1 2\/{? -1 06 /Z:\&.__;:gg;g
PR T
o n{ \&SH [

 For the critically damped and overdamped cases, the 02 \\\\““77 A -~

responses is always positive or zero o4 7
» For the underdamped case, the response oscillates about

zero and takes both positive and negative values ol L L L P

28
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Steady-State Errors in Feedback Control Systems

» Any physical control system inherently suffers steady-state error in response to
certain types of inputs, e.g. it may have no steady-state error to a step input, but
may exhibit nonzero steady-state error to a ramp input = depends on the type of
open-loop transfer function of the system

Ris) Eix) Ci5)

Steady-State Errors
» Consider the system beside, the transfer function is,

C(s) G(s)
R(s) 1+ G(s)H(s)
» The transfer function between the error signal e(t) and the input signal r(t) is,
E(s) R(s)—H(s)C(s) _ H(s)C(s) _ 1
R(s) R(s) =1- R(s) 1+ G(s)H(s)
« The steady-state error can be computed by using the final-value theorem,

B(5)

E(s) =

R(s) wmp €55 = llm e(t) = limsE(s) = 11 SR(s)

1+ G(s)H(s) s—0 -01 + G(s)H(s)

29

Gis) -
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Steady-State Errors in Unity-Feedback Control Systems

Static Position Error Constant K,

The steady-state error of the system for a unit-step input is,

Cis)
s -

: S 1 1
s = I (1 +G(s)H (s)) <§> 1+ G(0)H(0)
The static position error constant K, is defined by,
K, = lir% G(s)H(s) = G(0)H(0) H(s) | etm—
S—

Thus, the steady-state error in terms of K, is given by,  egs =

Static Velocity Error Constant K,

The steady-state error of the system with a unit-ramp input is,

S 1 1
- i [E
s = J0\1 + G(s)H(s) <Sz> Pt sG(s)H(s)
The static velocity error constant K, is defined by, K,, = lirr(g sG(s) H(s)
S—

Thus, the steady-state error in terms of K, is given by, eg = Ki

v

30
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Steady-State Errors in Unity-Feedback Control Systems

Static Acceleration Error Constant K,

« The steady-state error of the system for a unit-parabelic input (or acceleration

input) is, X(t)
tZ
— >
rit)y=4{7" t=0
0, t<0
0 t

_ i > L) =1 -
€ss = I3 (1 n G(s)H(S)) (S_3> ~ 026 (H()

» The static acceleration error constant K, is defined by,
K, = lir% s2G(s)H(s)
S—

« Thus, the steady-state error in terms of K, is given by,

Ris) Eix)

(5

Bi(s)

ix)

Hix)

31
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Steady-State Errors in Unity-Feedback Control Systems

Riz) Eix) 5

Summary (5 ——| (s

H[:_ﬂ —

Step Input Ramp Input Acceleration Input
HOER! r(t) =t r(t) = t?/2

Static Position Error

Constant K, ?—% Sl i i
Static Velocity Error ]
- | -

Constant K, 530 SE) )
Static Acceleration Error .
Constant K ] i ?—%S Sl ()
Steady State Error e, 1 1 1

1+ KP Kv Ka

32
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Example 3

Find the steady state error for (a) a unit-step input; (b) a unit-ramp input; and (c) a unit
parabolic input.

+ s+2 4
o T
Answer:
()
1 c B 1 4(s + 2) 1 0

K = IMGOHE) =l e G ° - s =7 +K,

(b)
4 2 1

K, = 1m sG(s)H(s) = 11 OS(S i(i;(_s -I)- D ‘ egs = X = 0.5

()

452 2 1
Ko = lIms?0GHE) =l D=0 e ==

33



tzl ol Prolossiosal Ed scafion

ZQ\ THE HONG KONG R
qedb POLYTECHNIC UNIVERSITY "

i itk T T AR SPEED
Effects of Integral and Derivative Control Actions on
System Performance

Integral Control Action

* In the integral control of a plant, the control signal — output signal from the
controller — at any instant is the area under the actuating-error-signal curve up to
that instant

« The control signal u(t) can have a nonzero value when the actuating error signal e(t)
IS zero as shown below

« This is impossible in the case of the proportional controller, since a nonzero control
signal requires a nonzero actuating error signal as shown below

ell) elf)
’\ . ’\ (@) Plots of e(t) and u(t) curves

0 N~ , 0 S~ F! showing nonzero control signal
(integral control)
u(f) ulf) (b) Plots of e(t) and u(t) curves
l/\/\ ]\ showing zero control signal
_ - (proportional control)

0 i 0 f
(a) (b)

34
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Effects of Integral and Derivative Control Actions on
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Ri(s) Elx) 1 ]

Proportional Control of Systems — (5| & | —

ZR\ THE HONG KONG e
q b W

s+ 1
» Consider the system shown beside, then Proportional Plant
K C(s) G(s)
G(s) = an =
Ts+1 R(s) 1+4+G(s)

controller

E(s) C(s) 1
R(s) =~ R(s) 1+G(s)

R(s) =1/s

R _E(s)=< Ts + 1 )(1)

s~ E(s) = R(s) =

K Ts+1+K/\s

Ts+1 "
« The steady-state error is, - | /Dﬁsm
l

: _ _ Ts+1 1 1
ess = lim e(t) = llr% sE(s) = 11r%(s) =
S— S—

14+ G(s)

1+

t—oo Ts+1+K)/\s 1+K

A system without an integrator in the feedforward path always .
has a steady-state error (called “offset”) in the step response.

35



POLYTECHNIC UNIVERSITY

i itk T T AR SPEED
Effects of Integral and Derivative Control Actions on

System Performance

Integral Control of Systems
» Consider the system shown beside, then

ZQ\ THE HONG KONG T
q b W

K R(s) El(s) C(5)
C(s) s(Ts+1) _ K —_— % i -ﬂ.LJ -
R(s) K s(Ts+1)+K
&) 14 s(Ts +1) s(Ts D ' ‘
E(s) C(s)  s(Ts+1) _ s(Ts+1)
Re) L TRG sTsrD+k - EO T gty 1k FO

« The steady-state error for the unit-step response can be obtained by applying the
final-value theorem,

. _ lim sE(s) = I s?’(Ts+ 1) 1 0
t s = A ES T sTs+ D+ k/\S) T

* Integral control of the system thus eliminates the steady-state error in the response
to the step input
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Example 4

Consider the system shown below. The proportional controller delivers torque T to position the
load element, which consists of moment of inertia (J) and viscous friction (b). Torque disturbance
Is denoted by D which is a step function of magnitude T,; . Determine the steady-state error if

reference input is zero. 5

Answer: . _ B '
Since R(s) = 0, there will be only one input » @ = Ky —L@-» }_mLm
D(s). Hence the transfer function between '
C(s) and D(s) is,
1

C(s)  sUs+b) 1 - .E(s)_R(s)—C(s)__C(s)__ 1
D(s)_1+ 1 K ~ Js2+bs+K "D(s)  D(s) = D(s) Js?2+bs+K

s(Js+b) P

The steady-state error due to a step disturbance torque of magnitude Ty is given by

= lim sE(s) = ! Tay _ _Ta
s = I SEE) = Jpls) Js2+bs+K (?)__?
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Example 5

The proportional controller in Example 4 is now replaced by a proportional-plus-
integral controller as shown below. Find the steady-state error of the system with the

same condition of Example 4, i.e. R(s) =0 and D(s) =Ty / s.

D

Answer: l

B@i— ﬁcr|1+lr,‘?:--’r.-®- - -

E(s) =R(s) —C(s) » E(s) =—C(s) |
1 1
E(s) _ () _ sUs +b) __ s7s +b)
D(s)  D(s) 1 1 ~ s2T;(Js+ b) + K,(T;s + 1)
b (Kp 1+ T_s>> ) 05 B)s?

. E(S) _ TiS

"D(s) (s +b)Tis? + Ky(Tis + 1)
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Example 5

Answer:

CE(s) T;s B T;s
"D(s)  sUs+D)Tis+Ky(Tis+1)  JTis3+bTis2 +K,Tis + K,

Steady-state error

— lim SE = lim(s) i (Td)
ess = limsE(s) = lim(s JT;is3 + bTis? + K, Tis + K, ) \'s

0
855=K—=0
p
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Effects of Integral and Derivative Control Actions on
System Performance

Derivative control action, when added to a proportional controller, obtaining a
controller with high sensitivity

It responds to the rate of change of the actuating error and can produce a significant

correction before the magnitude of the actuating error becomes too large

Derivative control thus anticipates the actuating error, initiates an early corrective
action, and tends to increase the stability of the system

Not affect the steady-state error directly, it adds damping to the system and thus
permits the use of a larger value of the gain K, which will result in an improvement
In the steady-state accuracy

=)
[

P

Js?

{'I:I:-J

%

Ko(1+ Tys)

Cis)

' clf) 4
1




