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Systems
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chapter 3-2)
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Introduction

• In studying control systems it must be able to model dynamic systems in 

mathematical terms and analyze their dynamic characteristics

• A mathematical model of a dynamic system is defined as a set of equations 

that represents the dynamics of the system accurately, or at least fairly well

• The dynamics of many systems, whether they are mechanical, electrical, 

thermal, economic, biological, and so on, may be described in terms of 

differential equations

• Throughout the subject we assume that the principle of causality applies to 

the systems considered
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Introduction

• Mathematical Models

– May assume many different forms, depending on the particular system 

and the particular circumstances

– In optimal control problems, it is advantageous to use state-space 

representations [Unit 7]

– For the transient-response or frequency-response analysis of single-

input, single-output, linear, time-invariant systems, the transfer-function 

representation [this Unit] may be more convenient
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Introduction

• Linear Systems

– The principle of superposition applies that the response produced by the 

simultaneous application of two different forcing functions is the sum of the 

two individual responses

– In an experimental investigation of a dynamic system, if cause and effect are 

proportional, thus implying that the principle of superposition holds

• Linear Time-Invariant Systems and Linear Time-Varying Systems

– A differential equation is linear if the coefficients are constants or functions 

only of the independent variable

– Linear time-invariant differential equations are constant-coefficient differential 

equations. Such systems are called linear time-invariant (LTI) systems

– Systems that are represented by differential equations whose coefficients are 

functions of time are called linear time-varying (LTV) systems.
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Transfer Function and Impulse-Response Function

Transfer Function

– commonly used to characterize the input-output relationships of 

components or systems that can be described by linear, time-invariant, 

differential equations

– is defined as the ratio of the Laplace transform of the output (response 

function) to the Laplace transform of the input (driving function) under 

the assumption that all initial conditions are zero
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Transfer Function and Impulse-Response Function

Consider the linear time-invariant system defined by the following differential 
equation,

𝑎0𝑦
(𝑛) + 𝑎1𝑦

𝑛−1 +⋯+ 𝑎𝑛−1𝑦
1 + 𝑎𝑛𝑦

= 𝑏0𝑥
𝑚 + 𝑏1𝑥

𝑚−1 +⋯+ 𝑏𝑚−1𝑥
1 + 𝑏𝑚𝑥, 𝑛 ≥ 𝑚

where y is the output and x is the input of the system

Transfer fucntion = 𝐺 𝑠 = ቤ
ℒ output

ℒ input
zero initial conditions

=
𝑌(𝑠)

𝑋(𝑠)
=
𝑏0𝑠

𝑚 + 𝑏1𝑠
𝑚−1 +⋯+ 𝑏𝑚−1𝑠 + 𝑏𝑚

𝑎𝑠𝑛 + 𝑎1𝑠
𝑛−1 +⋯+ 𝑎𝑛−1𝑠 + 𝑎𝑛

• Highest power of s in the denominator of the transfer function is equal to n, the 
system is called an nth-order system
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Transfer Function and Impulse-Response Function

Comments on Transfer Function
1. It is a mathematical model expressed in differential equation that relates the output 

variable to the input variable

2. It is a property of a system itself, independent of the magnitude and nature of the 
input or driving function

3. It includes the units necessary to relate the input to the output; however, it does not 
provide any information concerning the physical structure of the system. 

4. It is used to determine the output (or response) from different kind of inputs 

5. If the transfer function of a system is unknown, it may be established 
experimentally by introducing known inputs and studying the output of the system. 
Once established, a transfer function gives a full description of the dynamic 
characteristics of the system, as distinct from its physical description  System 
Identification (outside the scope of this subject)
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Transfer Function and Impulse-Response Function

Impulse-Response Function, 𝛿(𝑡)
• Consider the output (response) of a linear time-invariant system (LTI) to a unit-

impulse input when the initial conditions are zero. Since the Laplace transform of 

the unit-impulse function is unity, the Laplace transform of the output of the system 

is,

𝑌 𝑠 = 𝐺 𝑠 𝑋 𝑠 = 𝐺(𝑠)

• The inverse Laplace transform of output gives the impulse response of the system,

ℒ−1 𝑌(𝑠) = ℒ−1 𝐺(𝑠) = 𝑔(𝑡)

• The function g(t) is also called the weighting function of the system

• The Laplace transform of the impulse-response function gives the transfer function

• It is possible to obtain complete information about the dynamic characteristics of 

the system by exciting it with an impulse input and measuring the response
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Block Diagrams

• A control system may consist of a number of components which is 

commonly represented by block diagram

• A block diagram of a system is a pictorial representation of the functions 

performed by each component and of the flow of signals

• In a block diagram all system variables are linked to each other through 

functional blocks

• The functional block (or simply block) is a symbol for the mathematical 

operation on the input signal to the block that produces the output

• The transfer functions of the components are usually entered in the 

corresponding blocks, which are connected by arrows to indicate the 

direction of the flow of signals  a unilateral property
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Block Diagrams

• Summing Point: A circle with a cross is the symbol that indicates a 

summing operation. The plus or minus sign at each arrowhead indicates 

whether that signal is to be added or subtracted. 

• Branch Point: A point from which the signal from a block goes 

concurrently to other blocks or summing points.
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𝐺1(𝑠) 𝐺2(𝑠)

𝐺1(𝑠) 𝐺2(𝑠)

𝐺3(𝑠)



Block Diagrams

Block diagram of a Closed-loop System

• The output C(s) is fed back to the summing point, 

where it is compared with the reference input 

R(s).

• 𝐶 𝑠 =

• It is necessary to convert the form of the output 

signal to that of the input signal (same dimension 

or unit)

• This conversion is accomplished by the feedback 

element whose transfer function is H(s)

• The feedback signal that is fed back to the 

summing point for comparison with the input is, 

𝐵 𝑠 = 𝐻 𝑠 𝐶(𝑠)
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Block Diagrams

Open-Loop Transfer Function & Feedforward Transfer Function

B(s): Feedback Signal; E(s): Actuating Error Signal
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Open − loop transfer function =
𝐵 𝑠

𝐸 𝑠
= 𝐺 𝑠 𝐻(𝑠)

Feedforward transfer function =
𝐶 𝑠

𝐸 𝑠
= 𝐺 𝑠

If the feedback transfer function H(s) is unity, then the open-loop transfer function and 

the feedforward transfer function are the same



Block Diagrams

Closed-Loop Transfer Function
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Closed − loop transfer function =
ℒ Output

ℒ Input
=
𝐶 𝑠

𝑅 𝑠

From the above closed-loop transfer function,

𝐶 𝑠 = 𝐺 𝑠 𝐸(𝑠)

𝐸 𝑠 = 𝑅 𝑠 − 𝐵 𝑠 = 𝑅 𝑠 − 𝐻 𝑠 𝐶(𝑠)

𝐶 𝑠 = 𝐺 𝑠 𝑅 𝑠 − 𝐻 𝑠 𝐶(𝑠)

𝐶(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)

1 + 𝐺 𝑠 𝐻(𝑠)

𝐶 𝑠 =
𝐺 𝑠

1 + 𝐺 𝑠 𝐻 𝑠
𝑅(𝑠)



Example 1

Determine the transfer function C(s) / R(s) of the below systems
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Answer:
𝐶(𝑠)

𝑅(𝑠)
= 𝐺1(𝑠)𝐺2(𝑠)

𝐶(𝑠)

𝑅(𝑠)
= 𝐺1 𝑠 + 𝐺2(𝑠)

𝐶 𝑠 = 𝑅 𝑠 𝐺1 𝑠 + 𝑅(𝑠)𝐺2(𝑠)

Cascaded

Parallel

Feedback

𝐶(𝑠)

𝑅(𝑠)
=

𝐺1(𝑠)

1 + 𝐺1(𝑠)𝐺2(𝑠)



Example 2

Obtain the closed-loop transfer function C(s) / R(s).
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Answer:
𝐶(𝑠)

𝑅(𝑠)
=

𝐺1 + 𝐺2
1 + 𝐺1 + 𝐺2 𝐺3 − 𝐺4



Block Diagrams

Closed-loop system subjected to a disturbance

• Apply superposition,

𝐶𝐷(𝑠)

𝐷(𝑠)
=

𝐺2(𝑠)

1 + 𝐺1 𝑠 𝐺2 𝑠 𝐻(𝑠)

𝐶𝑅(𝑠)

𝑅(𝑠)
=

𝐺1(𝑠)𝐺2(𝑠)

1 + 𝐺1 𝑠 𝐺2 𝑠 𝐻(𝑠)

• The response to the simultaneous application of the reference input and disturbance

can be obtained by adding the two individual responses, 𝐶 𝑠 = 𝐶𝑅 𝑠 + 𝐶𝐷 𝑠
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Block Diagrams

Procedures for drawing a block diagram

1. Write the equations that describe the dynamic behavior of each 

component

2. Then take the Laplace transforms of these equations, assuming 

zero initial conditions

3. Represent each Laplace-transformed equation individually in block 

form

4. Assemble the elements into a complete block diagram.
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Block Diagrams

Consider the RC circuit:

1. Write the equations

and

2. Taking Laplace Transform

𝐼 𝑠 =
𝐸𝑖 𝑠 − 𝐸0(𝑠)

𝑅
and 𝐸0 =

𝐼(𝑠)

𝑠𝐶

3. Represent in block form

4. Assemble all the blocks
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𝑖 =
𝑒𝑖 − 𝑒0
𝑅

𝑒0 =
1

𝐶
න 𝑖𝑑𝑡



Block Diagrams

Block Diagram Reduction
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Example 3

Simplify the below block diagram.

Answer:

Moving the summing point of the negative feedback loop containing H2 outside the 

positive feedback loop containing H1
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Example 3

Eliminating the positive feedback loop

Eliminating the loop containing H2 / G1 gives,

Finally, eliminating the feedback loop results,
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Example 4

Simply the below block diagram.
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Answer: 
𝐶(𝑠)

𝑅(𝑠)
=

𝐺 + 𝐻1
1 + 𝐺𝐻2



Modelling of Automatic Controllers

• An automatic controller compares the actual value of the plant 

output with the reference input (desired value), determines the 

deviation, and produces a control signal that will reduce the 

deviation to zero or to a small value
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Automatic Controllers

• Classifications of Industrial Controllers

1. Two-position or on–off controllers

2. Proportional (P) controllers

3. Integral (I) controllers

4. Proportional-plus-integral (PI) controllers

5. Proportional-plus-derivative (PD) controllers

6. Proportional-plus-integral-plus-derivative (PID) controllers

• Controllers may also be classified according to the kind of power 

employed in the operation, such as pneumatic controllers, 

hydraulic controllers, or electronic controllers
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Automatic Controllers

• Two-Position or On-Off Control Action

– The actuating element has only two fixed positions, i.e. ON and OFF

– It is relatively simple and inexpensive and, for this reason, is very 

widely used in both industrial and domestic control systems

– Let the output signal from the controller be u(t) and the actuating error 

signal be e(t), so that

𝑢 𝑡 ቊ
= 𝑈1, for 𝑒 𝑡 > 0

= 𝑈2, for 𝑒 𝑡 < 0

Where U1 and U2 are constants
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Automatic Controllers

• Proportional Control Action

– For a controller with proportional control action, the relationship between 
the output of the controller u(t) and the actuating error signal e(t) is,

𝑢 𝑡 = 𝐾𝑝𝑒(𝑡)

– or, in Laplace-transformed quantities,

𝑈(𝑠)

𝐸(𝑠)
= 𝐾𝑝

where Kp is termed the proportional gain

– Whatever the actual mechanism may be and whatever the form of the 
operating power, the proportional controller is essentially an amplifier with 
an adjustable gain
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Automatic Controllers

• Integral Control Action

– In a controller with integral control action, the value of the controller 

output u(t) is changed at a rate proportional to the actuating error signal 

e(t). That is,

𝑑

𝑑𝑡
𝑢 𝑡 = 𝐾𝑖𝑒 𝑡 or 𝑢 𝑡 = 𝐾𝑖න

0

𝑡

𝑒 𝑡 𝑑𝑡

where Ki is an adjustable constant

– The transfer function of the integral controller is,

𝑈(𝑠)

𝐸 𝑠
=
𝐾𝑖
𝑠
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Automatic Controllers

• Proportional-Plus-Integral Control Action

– The control action of a proportional-plus-integral controller is defined 

by

𝑢 𝑡 = 𝐾𝑝𝑒 𝑡 +
𝐾𝑝

𝑇𝑖
න
0

𝑡

𝑒 𝑡 𝑑𝑡

where Ti is called the integral time

– The transfer function of the controller is,

𝑈(𝑠)

𝐸 𝑠
= 𝐾𝑝 1 +

1

𝑇𝑖𝑠
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• Proportional-Plus-Integral-Plus-Derivative Control Action

– The equation of a controller with this combined action is given by

𝑢 𝑡 = 𝐾𝑝𝑒 𝑡 +
𝐾𝑝

𝑇𝑖
න
0

𝑡

𝑒 𝑡 𝑑𝑡 + 𝐾𝑝𝑇𝑑
𝑑

𝑑𝑡
𝑒(𝑡)

where Td is called the derivative time

– The transfer function of the controller is,

𝑈(𝑠)

𝐸 𝑠
= 𝐾𝑝 1 +

1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠

Automatic Controllers
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Modelling of Mechanical Systems

• The fundamental law governing mechanical systems is Newton’s second 

law: 𝑚𝑎 = σ𝐹, where m is the mass, a is the acceleration

• Linear Translation Motion: mass, linear spring, damper (provides viscous 

friction)
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Mass Linear Spring Damper

𝑓 𝑡 = 𝑚
𝑑2

𝑑𝑡2
𝑥(𝑡)

𝐹 𝑠 = 𝑚𝑠2𝑋(𝑠)

𝑓 𝑡 = 𝑘𝑥(𝑡) 𝑓 𝑡 = 𝑏
𝑑

𝑑𝑡
𝑥(𝑡)

𝐹 𝑠 = 𝑘𝑋(𝑠) 𝐹 𝑠 = 𝑏𝑠𝑋(𝑠)

b



Simple Spring Systems

• Springs in Parallel

– The equivalent spring constant keq is obtained from 𝑘1𝑥 + 𝑘2𝑥 = 𝐹 = 𝑘𝑒𝑞𝑥

⟹ 𝑘𝑒𝑞 = 𝑘1 + 𝑘2

• Springs in Series

– The force in each spring is the same, thus  𝑘1𝑦 = 𝐹, 𝑘2 𝑥 − 𝑦 = 𝐹

– Elimination of y from these two equations results in,

𝑘2 𝑥 −
𝐹

𝑘1
= 𝐹 𝑜𝑟 𝑘2𝑥 = 𝐹 +

𝑘2
𝑘1

𝐹 =
𝑘1 + 𝑘2
𝑘1

𝐹

– The equivalent spring constant keq for this case,

𝑘𝑒𝑞 =
𝐹

𝑥
=

𝑘1𝑘2
𝑘1 + 𝑘2

=
1

1
𝑘1

+
1
𝑘2

Modelling of Mechanical Systems

32



Simple Damper Systems

• Dampers in Parallel

– The force f due to the dampers is, 

𝑓 = 𝑏1 ሶ𝑦 − ሶ𝑥 + 𝑏2 ሶ𝑦 − ሶ𝑥 = 𝑏1 + 𝑏2 ሶ𝑦 − ሶ𝑥

– The equivalent viscous-friction coefficient beq ,  𝑏𝑒𝑞 = 𝑏1 + 𝑏2

• Dampers in Series

– The force f due to the dampers, 𝑓 = 𝑏1 ሶ𝑧 − ሶ𝑥 = 𝑏2 ሶ𝑦 − ሶ𝑧
where z is the displacement of a point between damper b1 and damper b2

– We have, 𝑏1 + 𝑏2 ሶ𝑧 = 𝑏2 ሶ𝑦 + 𝑏1 ሶ𝑥 𝑜𝑟 ሶ𝑧 =
1

𝑏1+𝑏2
(𝑏2 ሶ𝑦 + 𝑏1 ሶ𝑥) 

𝑓 = 𝑏2 ሶ𝑦 − ሶ𝑧 = 𝑏2 ሶ𝑦 −
1

𝑏1 + 𝑏2
(𝑏2 ሶ𝑦 + 𝑏1 ሶ𝑥) =

𝑏1𝑏2
𝑏1 + 𝑏2

ሶ𝑦 − ሶ𝑥

𝑏𝑒𝑞 =
𝑓

ሶ𝑦 − ሶ𝑥
=

𝑏1𝑏2
𝑏1 + 𝑏2

=
1

1
𝑏1

+
1
𝑏2

Modelling of Mechanical Systems
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Example 5
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Spring-Mass-Damper System

Consider the spring-mass-damper system mounted on a massless cart as 

shown below. In this system, u(t) is the displacement of the cart and is the 

input to the system;  and the displacement y(t) of the mass is the output 

(the displacement is relative to the ground).  In this system, m denotes the 

mass, b denotes the viscous-friction  coefficient, and k denotes the spring.



Example 5
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For translational systems, Newton’s second law states that

𝑚𝑎 =෍𝐹

Noting that the cart is massless, we obtain,

𝑚
𝑑2

𝑑𝑡2
𝑦 𝑡 = −𝑏

𝑑

𝑑𝑡
𝑦 𝑡 −

𝑑

𝑑𝑡
𝑢 𝑡 − 𝑘 𝑦 𝑡 − 𝑢(𝑡)

Or     𝑚 ሷ𝑦 𝑡 + 𝑏 ሶ𝑦 𝑡 + 𝑘𝑦 = 𝑏 ሶ𝑢 𝑡 + 𝑘𝑢(𝑡)

Taking the Laplace transform and assuming zero initial condition, gives

𝑚𝑠2 + 𝑏𝑠 + 𝑘 𝑌 𝑠 = 𝑏𝑠 + 𝑘 𝑈(𝑠)

Hence, the transfer function,

𝐺 𝑠 =
𝑌(𝑠)

𝑈(𝑠)
=

𝑏𝑠 + 𝑘

𝑚𝑠2 + 𝑏𝑠 + 𝑘

m

u y

k

b



Example 6

Obtain the transfer function Y (s) / U (s) of the system below.  The input u is a 

displacement input. (This is also a simplified version of an automobile or 

motorcycle suspension system.)

Answer:
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𝑚1 ሷ𝑥 = 𝑘2 𝑦 − 𝑥 + 𝑏 ሶ𝑦 − ሶ𝑥 − 𝑘1 𝑥 − 𝑢

𝑚2 ሷ𝑥 = −𝑘2 𝑦 − 𝑥 − 𝑏 ሶ𝑦 − ሶ𝑥

m1 x

b

k1

k2

u

m2

k2 b

y

x



Example 6
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Answer:

Rearranging the terms, we have

𝑚1 ሷ𝑥 + 𝑏 ሶ𝑥 + 𝑘1𝑥 + 𝑘2𝑥 = 𝑘1𝑢 + 𝑏 ሶ𝑦 + 𝑘2𝑦 𝑚2 ሷ𝑦 + 𝑏 ሶ𝑦 + 𝑘2𝑦 = 𝑏 ሶ𝑥 + 𝑘2𝑥

Taking Laplace Transform (with zero initial condition),

and

𝑚1𝑠
2𝑋(𝑠) + 𝑏𝑠𝑋(𝑠) + 𝑘1𝑋(𝑠) + 𝑘2𝑋(𝑠) = 𝑘1𝑈(𝑠) + 𝑏𝑠𝑌(𝑠) + 𝑘2𝑌(𝑠)

𝑚2𝑠
2𝑌(𝑠) + 𝑏𝑠𝑌(𝑠) + 𝑘2𝑌(𝑠) = 𝑏𝑠𝑋(𝑠) + 𝑘2𝑋(𝑠)

𝑚2𝑠
2 + 𝑏𝑠 + 𝑘2
𝑏𝑠 + 𝑘2

𝑌(𝑠) = 𝑋(𝑠)

𝑚1𝑠
2 + 𝑏𝑠 + 𝑘1 + 𝑘2

𝑚2𝑠
2 + 𝑏𝑠 + 𝑘2
𝑏𝑠 + 𝑘2

𝑌(𝑠) = 𝑘1𝑈 𝑠 + 𝑏𝑠 + 𝑘2 𝑌(𝑠)

∴
𝑌 𝑠

𝑈(𝑠)
=

𝑘1(𝑏𝑠 + 𝑘2)

𝑚1𝑠
2 + 𝑏𝑠 + 𝑘1 + 𝑘2 𝑚2𝑠

2 + 𝑏𝑠 + 𝑘2 − 𝑏𝑠 + 𝑘2
2



Modelling of Electrical Systems

• Basic laws governing electrical circuits are Kirchhoff’s current law and 

voltage law

• Three basic elements: Resistor (R), Inductor (L) and Capacitor (C)

38

Resistor Inductor Capacitor

𝑣 𝑡 = 𝑅𝑖(𝑡)

𝑉 𝑠 = 𝑅𝐼(𝑠)

𝑣 𝑡 = 𝐿
𝑑

𝑑𝑡
𝑖(𝑡) 𝑣 𝑡 =

1

𝐶
න 𝑖 𝑡 𝑑𝑡

𝑉 𝑠 = 𝑠𝐿𝐼(𝑠) 𝑉 𝑠 =
𝐼(𝑠)

𝑠𝐶



Modelling of Electrical Systems

39

RC Circuit
Consider the electrical circuit.

Applying Kirchhoff’s voltage law to the system,

we obtain,

𝑖 𝑡 𝑅 +
1

𝐶
න 𝑖 𝑡 𝑑𝑡 = 𝑒𝑖(𝑡)

1

𝐶
න 𝑖 𝑡 𝑑𝑡 = 𝑒0(𝑡)

Taking Laplace transform with zero initial conditions,

𝑅𝐼 𝑠 +
𝐼(𝑠)

𝑠𝐶
= 𝐸𝑖 𝑠 and

𝐼(𝑠)

𝑠𝐶
= 𝐸0 𝑠

Then the transfer function of this system is,

𝐸0(𝑠)

𝐸𝑖(𝑠)
=

1
𝑠𝐶 𝐼(𝑠)

𝑅 +
1
𝑠𝐶 𝐼(𝑠)

=
1

1 + 𝑠𝑅𝐶

ei
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Transfer Functions of Cascaded Elements (with loading effect)

Consider the system as shown below. 

Assume that 𝑒𝑖(𝑡) is the input and 𝑒𝑜(𝑡) is the output.

The capacitances C1 and C2 are not charged initially.

The equations for this systems are,

40

1

𝐶1
න 𝑖1(𝑡) − 𝑖2(𝑡) 𝑑𝑡 − 𝑅2𝑖2 −

1

𝐶2
න 𝑖2(𝑡) 𝑑𝑡 = 0

1

𝐶1
න 𝑖1(𝑡) − 𝑖2(𝑡) 𝑑𝑡 + 𝑅1𝑖1 = 𝑒𝑖(𝑡)

1

𝐶2
න𝑖2(𝑡) 𝑑𝑡 = 𝑒0(𝑡)

1

𝑠𝐶1
𝐼1(𝑠) − 𝐼2(𝑠) + 𝑅1𝐼1 𝑠 = 𝐸𝑖(𝑠)

1

𝑠𝐶1
𝐼1(𝑠) − 𝐼2(𝑠) − 𝑅2𝐼2 𝑠 −

1

𝑠𝐶2
𝐼2(𝑠) = 0

1

𝑠𝐶2
𝐼2(𝑠) = 𝐸0(𝑠)

Laplace Transform
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Transfer Functions of Cascaded Elements (with loading effect)

Eliminating I1(s) and I2(s) from the above equations, we find the transfer 
function between Eo(s) and Ei(s) to be

𝐸𝑜(𝑠)

𝐸𝑖(𝑠)
=

1

𝑅1𝐶1𝑠 + 1 𝑅2𝐶2𝑠 + 1 + 𝑅1𝐶2𝑠

=
1

𝑅1𝐶1𝑅2𝐶2𝑠
2 + 𝑅1𝐶1 + 𝑅2𝐶2 + 𝑅1𝐶2 𝑠 + 1

• The overall transfer function of the cascaded RC circuit is not just 
1

𝑅1𝐶1𝑠+1

1

𝑅2𝐶2𝑠+1

• Derive the transfer function for an isolated circuit, the output is assumed to 
be unloaded, which means that no power is being withdrawn at the output

41



Complex Impedances Method

• Write the Laplace-transformed equations directly, without writing the 

differential equations

• The complex impedance Z(s) of a two-terminal circuit is the ratio of E(s) to 

I(s), so that Z(s) = E(s) / I(s) assumes zero initial conditions

• For resistance R, capacitance C, or inductance L, then the complex 

impedance is given by R, 1 / Cs, or Ls, respectively

• Assume that the voltages 𝑒𝑖(𝑡) and 𝑒𝑜(𝑡) are the input and output of the 

circuit

Modelling of Electrical Systems
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𝐸𝑜(𝑠)

𝐸𝑖 𝑠
=

𝑍2(𝑠)

𝑍1(𝑠) + 𝑍2(𝑠)



Revisit the Transfer Functions of Cascaded Elements (with loading effect)

p.40

Example 7
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I1 I3

Z1

Z4

Z3

Z2

𝑍1 = 𝑅1

𝑍2 =
1

𝑠𝐶1

𝑍3 = 𝑅2

𝑍4 =
1

𝑠𝐶2

𝐼1 = 𝐼2 + 𝐼3

𝐸𝑖 𝑠 = 𝐼1𝑍1 + 𝐼2𝑍2

𝐸𝑜 𝑠 = 𝐼3𝑍4

𝐼2𝑍2 = 𝐼3𝑍3 + 𝐼3𝑍4



Example 7
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Revisit the Transfer Functions of Cascaded Elements (with loading effect) p.40

𝐼1 = 𝐼2 + 𝐼3

𝐸𝑖 𝑠 = 𝑍1𝐼1 + 𝑍2𝐼2

𝑍2𝐼2 = (𝑍3+𝑍4) 𝐼3

𝐸𝑜 𝑠 = 𝑍4𝐼3 𝐸𝑜(𝑠)

𝐸𝑖(𝑠)
=

𝑍4𝐼3
𝑍1𝐼1 + 𝑍2𝐼2

=
𝑍4𝐼3

𝑍1 𝐼2 + 𝐼3 + 𝑍2𝐼2

𝐸𝑜(𝑠)

𝐸𝑖(𝑠)
=

𝑍4𝐼3
𝑍1𝐼3 + (𝑍1+𝑍2)𝐼2

=
𝑍4𝐼3

𝑍1𝐼3 + (𝑍1+𝑍2)
𝑍3 + 𝑍4
𝑍2

𝐼3

𝐸𝑜(𝑠)

𝐸𝑖(𝑠)
=

𝑍2𝑍4
𝑍1𝑍2 + (𝑍1+𝑍2) 𝑍3 + 𝑍4

=

1
𝑠𝐶1

1
𝑠𝐶2

𝑅1
1
𝑠𝐶1

+ 𝑅1 +
1
𝑠𝐶1

𝑅2 +
1
𝑠𝐶2

∴
𝐸𝑜(𝑠)

𝐸𝑖(𝑠)
=

1

𝑅1𝐶1𝑅2𝐶2𝑠
2 + 𝑅1𝐶1 + 𝑅2𝐶2 + 𝑅1𝐶2 𝑠 + 1
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Transfer Functions of Non-loading Cascaded Elements

• The transfer function of a system consisting of two non-loading cascaded elements can 

be obtained by eliminating the intermediate input and output

• The transfer functions of the elements are,

𝐺1 𝑠 =
𝑋2(𝑠)

𝑋1(𝑠)
and 𝐺2 𝑠 =

𝑋3(𝑠)

𝑋2(𝑠)

• If the input impedance of the second element is infinite, the output of the first element is 

not affected by connecting it to the second element. Then the transfer function of the 

whole system becomes

𝐺 𝑠 =
𝑋3(𝑠)

𝑋1(𝑠)
=
𝑋2(𝑠)

𝑋1(𝑠)

𝑋3(𝑠)

𝑋2(𝑠)
= 𝐺1(𝑠)𝐺2(𝑠)

45



Modelling of Electrical Systems

Electronic Controllers

• An electronic controller is a device that compares the input signal with that of a 

predetermined control point value and determines the appropriate amount of output 

signal required by the final control element to provide corrective action within a control 

loop.

• Operational amplifier is one of the key components of electronic controllers

Operational Amplifiers

• Operational amplifiers (op amps), are frequently used to amplify signals in sensor 

circuits and filters used for compensation purposes

46

where the inputs e1 and e2 may be DC or AC signals 

and K is the differential gain (voltage gain)

𝑒𝑜 = 𝐾 𝑒2 − 𝑒1 = −𝐾 𝑒1 − 𝑒2



Modelling of Electrical Systems

Inverting Amplifier

• Consider the operational-amplifier circuit

• Since only a negligible current flows into the amplifier, the current i1 must be equal to 

current i2 . Thus,

• Since 𝐾 0 − 𝑒′ = 𝑒0 and 𝐾 ≫ 1, 𝑒′ must be almost zero, or 𝑒′ ≈ 0.  Hence, we have

• Thus, the circuit shown is an inverting amplifier. If 𝑅1 = 𝑅2 , then the op-amp circuit 

shown acts as a sign inverter
47

𝑖1 =
𝑒𝑖 − 𝑒′

𝑅1
, 𝑖2 =

𝑒′ − 𝑒𝑜
𝑅2

𝑒𝑖 − 𝑒′

𝑅1
=
𝑒′ − 𝑒𝑜
𝑅2

𝑒𝑖
𝑅1

=
−𝑒𝑜
𝑅2

𝑜𝑟 𝑒𝑜 = −
𝑅2
𝑅1

𝑒𝑖
𝐸𝑜(𝑠)

𝐸𝑖(𝑠)
= −

𝑅2
𝑅1



Example 8

Obtain the transfer function of an electrical circuit involving an operational amplifier.

Answer:
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𝑖1 =
𝑒𝑖 − 𝑒′

𝑅1
, 𝑖2 = 𝐶

𝑑

𝑑𝑡
𝑒′ − 𝑒𝑜 , 𝑖3 =

𝑒′ − 𝑒𝑜
𝑅2

The current flowing into the amplifier is negligible, we 

have 𝑖1 = 𝑖2 + 𝑖3. Hence,

Since 𝑒′ ≈ 0, we have 

𝑒𝑖 − 𝑒′

𝑅1
= 𝐶

𝑑

𝑑𝑡
𝑒′ − 𝑒𝑜 +

𝑒′ − 𝑒𝑜
𝑅2

𝑒𝑖
𝑅1

= 𝐶
𝑑

𝑑𝑡
−𝑒𝑜 +

−𝑒𝑜
𝑅2

Taking the Laplace transform of this equation, assuming the zero initial condition, we 

have
𝐸𝑖(𝑠)

𝑅1
= −𝑠𝐶𝐸𝑜 𝑠 −

𝐸𝑜 𝑠

𝑅2
⟹

𝐸𝑜 𝑠

𝐸𝑖 𝑠
= −

𝑅2
𝑅1 𝑠𝐶𝑅2 + 1
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Impedance Method to Obtaining Transfer Functions

Consider the op-amp circuit

Since 𝐸′ 𝑠 ≈ 0, we have

49

𝐸𝑖(𝑠) − 𝐸′(𝑠)

𝑍1(𝑠)
=
𝐸′ 𝑠 − 𝐸𝑜(𝑠)

𝑍2(𝑠)

𝐸𝑜(𝑠)

𝐸𝑖(𝑠)
= −

𝑍2(𝑠)

𝑍1(𝑠)

Same as p.47



Revisit Example 8

Answer:
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𝑍1 𝑠 = 𝑅1, 𝑍2 𝑠 =
1

𝐶𝑠 +
1
𝑅2

=
𝑅2

𝑅2𝐶𝑠 + 1

The transfer function Eo (s) / Ei (s) is, therefore, 

obtained as

Of course, the transfer function is the same as before

𝐸𝑜(𝑠)

𝐸𝑖(𝑠)
= −

𝑍2 𝑠

𝑍1 𝑠
= −

𝑅2
𝑅1 𝑠𝐶𝑅2 + 1
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PID Controller Using Operational Amplifiers

• An electronic proportional-plus-integral-plus-derivative controller (a PID controller) 

using operational amplifiers

• The transfer function, 

• where

• Thus,

• The transfer function of the PID controller is,

51

𝐸 (𝑠)

𝐸𝑖(𝑠)
= −

𝑍2 𝑠

𝑍1 𝑠

𝑍1 =
𝑅1

𝑅1𝐶1𝑠 + 1
𝑍2 =

𝑅2𝐶2𝑠 + 1

𝐶2𝑠

𝐸 (𝑠)

𝐸𝑖(𝑠)
= −

𝑅2𝐶2𝑠 + 1

𝐶2𝑠

𝑅1𝐶1𝑠 + 1

𝑅1

𝐸𝑜(𝑠)

𝐸𝑖(𝑠)
=
𝐸𝑜(𝑠)

𝐸(𝑠)

𝐸 (𝑠)

𝐸𝑖(𝑠)
= −

𝑅4
𝑅3

−
𝑅2𝐶2𝑠 + 1

𝐶2𝑠

𝑅1𝐶1𝑠 + 1

𝑅1
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PID Controller Using Operational Amplifiers

• Hence,

• When a PID controller is expressed as

52

𝐸𝑜(𝑠)

𝐸𝑖(𝑠)
=
𝑅4 𝑅1𝐶1 + 𝑅2𝐶2

𝑅3𝑅1𝐶2
1 +

1

𝑅1𝐶1 + 𝑅2𝐶2 𝑠
+

𝑅1𝐶1𝑅2𝐶2
𝑅1𝐶1 + 𝑅2𝐶2

𝑠

𝐸𝑜(𝑠)

𝐸𝑖(𝑠)
= 𝐾𝑝 1 +

1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠

𝐸𝑜(𝑠)

𝐸𝑖(𝑠)
= 𝐾𝑝 +

𝐾𝑖
𝑠
+ 𝐾𝑑𝑠

𝐾𝑝: Proportional gain

𝑇𝑖: Integral time

𝑇𝑑: Derivative time

• When a PID controller is expressed as 

𝐾𝑝: Proportional gain

𝐾𝑖: Integral gain

𝐾𝑑: Derivative gain

𝐾𝑃 =
𝑅4 𝑅1𝐶1 + 𝑅2𝐶2

𝑅3𝑅1𝐶2

𝐾𝑖 =
𝑅4

𝑅3𝑅1𝐶2

𝐾𝑑 =
𝑅4𝑅2𝐶1
𝑅3

𝐾𝑝 =
𝑅4 𝑅1𝐶1 + 𝑅2𝐶2

𝑅3𝑅1𝐶2

𝑇𝑖 = 𝑅1𝐶1 + 𝑅2𝐶2

𝑇𝑑 =
𝑅1𝐶1𝑅2𝐶2

𝑅1𝐶1 + 𝑅2𝐶2
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Signal Flow Graphs

• SFG is another pictorial representation of a system

• Every variable becomes a node and every 
transmission function A is designated by a branch

• Thus, A represents the system transfer function

x1 x2Ax1 x2

A 
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Signal Flow Graphs

• Signal flow graph algebra

Addition Transmission Multiplication

zyx 10 a

zx
10a

x y

c

m

1

y = mx + c

The variable at a node is 

equal to the sum of all 

signal entering the node

The variable designated 

by a node is transmitted 

on every branch leaving 

the node

Cascades are 

reduced as in 

block diagrams

x

y

z

-3

5

y = -3x, z = 5x



Signal Flow Graphs

Properties

1. SFG applies only to linear systems

2. The equations for which an SFG is drawn must be algebraic equations in the 

form of cause-and-effect

3. Nodes are used to represent variables. Normally, the nodes are arranged from 

left to right, from the input to the output, following a succession of cause-and-

effect relations through the system

4. Signals travel along branches only in the direction described by the arrows of 

the branches. 

5. The branch directing from node 𝑥𝑘 to 𝑥𝑗 represents the dependence of 𝑥𝑗
upon 𝑥𝑘 , but not the reverse

6. A signal 𝑥𝑘 traveling along a branch between 𝑥𝑘 and 𝑥𝑗 is multiplied by the 

gain (𝐴𝑘𝑗) of the branch, so a signal 𝐴𝑘𝑗𝑥𝑘 is delivered at 𝑥𝑗
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Example 9

Construct the signal flow graph of a system described by the following set of 

algebraic equations:

𝑥2 = 𝐴12𝑥1 + 𝐴32𝑥3
𝑥3 = 𝐴23𝑥2 + 𝐴43𝑥4
𝑥4 = 𝐴24𝑥2 + 𝐴34𝑥3 + 𝐴44𝑥4
𝑥5 = 𝐴25𝑥2 + 𝐴45𝑥4

Answer:

56
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Signal Flow Graphs
Definitions

– Input Node (Source): An input node is a node that has only outgoing 
branches

– Output Node (Sink): An output node is a node that has only incoming 
branches. However, this condition is not always readily met by an output 
node

– Path: A path is any collection of a continuous succession of branches 
traversed in the same direction

– Forward Path: A path of an input node to an output node, no node is 
traversed more than once

– Feedback Path or Loop: Originates and ends at the same node, no node is 
traversed more than once

– Self Loop:  A feedback loop consisting of one branch

– Path Gain: Product of the branch gains encountered in traversing a path

– Loop Gain: Path gain of a loop

– Non-touching Loops: Two parts of an SFG are non-touching if they do not
share a common node
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Signal Flow Graphs

Forward path? Feedback path? Self loop?

Gain? Path gain?     Loop gain?

Input node? Output node?
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Signal Flow Graphs

Mason’s rule


=




==
N

k

kkP
U

Y
M

1

)(
1

Y = Output-node variable

U = Input-node variable

N = Total number of forward paths between Y and U

Pk = Gain of the kth forward paths between Y and U

 = 1 – (sum of all individual loop gains) + (sum of gain products of 2 non-

touching loops) – (sum of gain products of 3 non-touching loops) + …

k =  evaluated with all loops touching Pk eliminated (i.e. set equal to zero)



Consider the signal flow graph constructed in Example 9.  Determine the gain by using 

the Mason’s rule.

Answer:

Forward Path (2):

Loop (4):

Non-touching Loop (1):

Example 10
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Example 10

Answer:

Try it yourself !
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∴
𝑦5
𝑦1

=
𝑎12𝑎23𝑎34𝑎45 + 𝑎12𝑎24𝑎45 + 𝑎12𝑎25 1 − 𝑎34𝑎43 − 𝑎44
1 − 𝑎23𝑎32 − 𝑎34𝑎43 − 𝑎44 − 𝑎24𝑎43𝑎32 + 𝑎23𝑎32𝑎44



Signal Flow Graphs

Block diagrams and their SFG equivalent representations

62
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Example 11

Construct a signal flow graph for the following block diagram 
and hence determine the transfer function (Y / U)

+
+

U

+
+

G2

G1
Y

H1
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Example 11
Answer:

The signal flow graph of the block diagram

U YG1

G2

H1

1 1

P1

P2

L1

L2
22

11

GP

GP

=

=

122

111

HGL

HGL

=

=

Forward paths:

Loops:

121121 1)(1 HGHGLL −−=+−=

Since both loops touch P1, hence set L1 = L2 = 0 in  to give 1 = 1

Similarly, since both loops touch P2, hence set L1 = L2 = 0 in  to give 2 = 1

1211

212211

1 HGHG

GGPP

U

Y

−−

+
=



+
=
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Example 12
Construct a signal flow graph for the following block diagram and hence 
determine the transfer function (Y / U).
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Example 12
Answer:
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Example 12
Answer:

Try it yourself !

∴
𝑌

𝑈
=

𝐺1𝐺2𝐺3 + 𝐺1𝐺4
1 − 𝐺1𝐺2𝐻1 + 𝐺2𝐺3𝐻2 − 𝐺1𝐺2𝐺3 − 𝐺1𝐺4 + 𝐺4𝐻2


