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Introduction

 In studying control systems it must be able to model dynamic systems in
mathematical terms and analyze their dynamic characteristics

« A mathematical model of a dynamic system is defined as a set of equations
that represents the dynamics of the system accurately, or at least fairly well

« The dynamics of many systems, whether they are mechanical, electrical,
thermal, economic, biological, and so on, may be described in terms of
differential equations

» Throughout the subject we assume that the principle of causality applies to
the systems considered

Input Output
(Cause) (Effect)
System > .
(set of equations) -




ZQ\ THE HONG KONG el -
?b T T

POLYTECHNIC UNIVERSITY

5 itk 7 T oA AR SPEE%
Introduction

 Mathematical Models

— May assume many different forms, depending on the particular system
and the particular circumstances

— In optimal control problems, it is advantageous to use state-space
representations [Unit 7]

— For the transient-response or frequency-response analysis of single-
Input, single-output, linear, time-invariant systems, the transfer-function
representation [this Unit] may be more convenient
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Introduction

« Linear Systems

— The principle of superposition applies that the response produced by the
simultaneous application of two different forcing functions is the sum of the
two individual responses

— In an experimental investigation of a dynamic system, if cause and effect are
proportional, thus implying that the principle of superposition holds

« Linear Time-Invariant Systems and Linear Time-Varying Systems

— Adifferential equation is linear if the coefficients are constants or functions
only of the independent variable

— Linear time-invariant differential equations are constant-coefficient differential
equations. Such systems are called linear time-invariant (LTI) systems

— Systems that are represented by differential equations whose coefficients are
functions of time are called linear time-varying (LTV) systems.
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Transfer Function and Impulse-Response Function

Transfer Function

— commonly used to characterize the input-output relationships of
components or systems that can be described by linear, time-invariant,
differential equations

— Is defined as the ratio of the Laplace transform of the output (response

function) to the Laplace transform of the input (driving function) under
the assumption that all initial conditions are zero

Transfer Function
Input —— G(s) = Y(s) —> Qutput
X(s) ~X(s) Y(s)
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Transfer Function and Impulse-Response Function

Consider the linear time-invariant system defined by the following differential
equation,

agy™ +ayy "V + et ay_ gy + ayy
= box™ + by x™ "V 4 o+ b1 xW + bx, (n = m)

where y is the output and x is the input of the system

L[output]
L[input]

Transfer fucntion = G(s) =

zero initial conditions

_ Y(S) _ boSm + blsm_l + .-+ bm_15 + bm
X(s)  as"+ast i+t a, S+ a,

« Highest power of s in the denominator of the transfer function is equal to n, the
system is called an nth-order system
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Transfer Function and Impulse-Response Function

Comments on Transfer Function

1.

It is a mathematical model expressed in differential equation that relates the output
variable to the input variable

It is a property of a system itself, independent of the magnitude and nature of the
input or driving function

It includes the units necessary to relate the input to the output; however, it does not
provide any information concerning the physical structure of the system.

It is used to determine the output (or response) from different kind of inputs

If the transfer function of a system is unknown, it may be established
experimentally by introducing known inputs and studying the output of the system.
Once established, a transfer function gives a full description of the dynamic
characteristics of the system, as distinct from its physical description = System
Identification (outside the scope of this subject)
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Transfer Function and Impulse-Response Function
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Impulse-Response Function, §(t)

« Consider the output (response) of a linear time-invariant system (LT1) to a unit-
impulse input when the initial conditions are zero. Since the Laplace transform of
the unit-impulse function is unity, the Laplace transform of the output of the system

is,
Y(s) =G(s)X(s) = G(s)

« The inverse Laplace transform of output gives the impulse response of the system,

L7HY ()] = L7HG()] = g(@©)

« The function g(t) is also called the weighting function of the system
« The Laplace transform of the impulse-response function gives the transfer function

* |tis possible to obtain complete information about the dynamic characteristics of
the system by exciting it with an impulse input and measuring the response
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Block Diagrams
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» Acontrol system may consist of a number of components which is
commonly represented by block diagram

» Ablock diagram of a system is a pictorial representation of the functions
performed by each component and of the flow of signals

* Inablock diagram all system variables are linked to each other through
functional blocks

» The functional block (or simply block) is a symbol for the mathematical
operation on the input signal to the block that produces the output

» The transfer functions of the components are usually entered in the
corresponding blocks, which are connected by arrows to indicate the
direction of the flow of signals = a unilateral property

10
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Block Diagrams
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> G1(5) > Gy(s) >

- Summing Point: A circle with a cross is the symbol that indicates a
summing operation. The plus or minus sign at each arrowhead indicates
whether that signal is to be added or subtracted.

« Branch Point: A point from which the signal from a block goes
concurrently to other blocks or summing points.

a__ a—b —3| G1(5) > Gy(s)

Z —>| G3(s)

11
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Block Diagrams

. Summing Branch
Block diagram of a Closed-loop System point point
» The output C(s) is fed back to the summing point, J l
where it is compared with the reference input R(s) E(s)
R(S).
. C(s) = t

It is necessary to convert the form of the output
signal to that of the input signal (same dimension
or unit)

This conversion is accomplished by the feedback
element whose transfer function is H(s)

The feedback signal that is fed back to the
summing point for comparison with the input is,
B(s) = H(s)C(s)

Ris) Eix) Ci5)

12
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Block Diagrams

Open-Loop Transfer Function & Feedforward Transfer Function
B(s): Feedback Signal; E(s): Actuating Error Signal

B(s
Open — loop transfer function = EES) = G(s)H(s)
. C(s)
Feedforward transfer function = —= = G(s)
E(s)
Riz) Eis) Cis)
s s

His)

If the feedback transfer function H(s) is unity, then the open-loop transfer function and

the feedforward transfer function are the same -
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Block Diagrams

Closed-Loop Transfer Function

Closed — loop transfer function =

C(s) = G(s)E(s) )
E(s) =R(s) —B(s) = R(s) —H(s)C(s)

-

C(s) = G(s)[R(s) —H(s)C(s)]
_/

From the above closed-loop transfer function,

G(s)

C) = T eHG)

R(s)

SPEE%
L[Output]  C(s)
L[Input]  R(s)
C(s) _ G(s)

R(s) 1+ G(s)H(s)

14
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Example 1

Determine the transfer function C(s) / R(s) of the below systems

Cascaded

()
(a) — 5] (i2(%)

R(5)

Ris)

Parallel

z Cis)

P

Feedback

Answer:

C(s _ G C
RG) 1(5)G2(s)

C(s) = R(s)G1(s) + R(5)G2(s)

C
% = G1(5) + Gy(s)
C(s) _ G1(s)

R(s) 1+ G1(5)Ga(s)

15
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Example 2

Obtain the closed-loop transfer function C(s) / R(s).

C(s) _ G; + Gy
R(s) 14 (Gy+ Gy)(G3—Gy)

G, Answer:

BB

Ris) C(s)
—»—@— @——h—-

-—p.-G:—#

Gﬂ —f—

16
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Closed-loop system subjected to a disturbance

» Apply superposition, Distubance
CD (S) _ GZ (S) Ris) . l i Cis)
D(S) — 1+ Gl (S)Gz (S)H(S) - % = (5 i @ = (s(5) ‘ -
His) |
Cr(s) _ G1(5)G(s)

R(s) 1+ G1(s)Go(s)H(s)

» The response to the simultaneous application of the reference input and disturbance
can be obtained by adding the two individual responses, C(s) = Cr(s) + Cp(s)

17
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Block Diagrams

Procedures for drawing a block diagram

1.

Write the equations that describe the dynamic behavior of each
component

Then take the Laplace transforms of these equations, assuming
zero initial conditions

Represent each Laplace-transformed equation individually in block
form

Assemble the elements into a complete block diagram.

18
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Block Diagrams

Consider the RC circulit: P
1. Write the equations O — °
N
e: — 60 1 £ : f/"ll — £
. l :
i = and eO=—Jldt i -
R ¢ o o
2. Taking Laplace Transform
E;(s) — Eo(s) I[(s)
I = dE, = —=
(s) - and Eo = —~
E;(5) fis) i
3. Represent in block form _"(%‘ me RO L £l
El5) :

E;(s) 1 (5) 1
4. Assemble all the blocks — el _‘—'
I 19
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Block Diagrams

Block Diagram Reduction

Original Block Diagrams Equivalent Block Diagrams
a2
A Al AG-B A G AG-B
1 —_— G G L
S 1
B ¢ G B
A AG A AG
2 —_— G - G .
AG AG
-l o R
A - AG A . AG
] - L e
AG LG A

A B
G
! A Gy B
3 1 1+606 [

20
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Example 3

Simplify the below block diagram.

l'7 H
s C
LD o 62 T 1.
f H,
Answer:

Moving the summing point of the negative feedback loop containing H, outside the
positive feedback loop containing H,

i@.é},@_ . F j N C
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Example 3

Eliminating the positive feedback loop
Ha
7]

R G1Ga c
’ | — G2, B

Eliminating the loop containing H,/ G, gives,

R [..l-"_f:-:[..;_:g
C%Z) | — GyinHy) + GrGaHy ‘

Finally, eliminating the feedback loop results,

Yo

R (51 Cralr
| — Gyraddy + (il + (G

ks

22
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Example 4
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C(s) G+ H
Simply the below block diagram. Answer: R(s) 1+GH,

H,

Ris) Clis)

L ¢

23
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Modelling of Automatic Controllers

« An automatic controller compares the actual value of the plant
output with the reference input (desired value), determines the
deviation, and produces a control signal that will reduce the
deviation to zero or to a small value

Automatic controller

Error detector
Reference | J
nput | _ | Qutput
_-h--l:z% T Amplifier | ACTUAIOT  fie]| Plant -
i Set
1[1:::1'11[] |
' Actuating i
error signal
L— —_— —_

SENSOT |-

24
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Automatic Controllers

» Classifications of Industrial Controllers

Two-position or on—off controllers

Proportional (P) controllers

Integral (I) controllers

Proportional-plus-integral (P1) controllers
Proportional-plus-derivative (PD) controllers
Proportional-plus-integral-plus-derivative (PID) controllers

o 0k wbhkE

« Controllers may also be classified according to the kind of power
employed in the operation, such as pneumatic controllers,
hydraulic controllers, or electronic controllers
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Automatic Controllers

 Two-Position or On-Off Control Action

— The actuating element has only two fixed positions, i.e. ON and OFF

— It is relatively simple and inexpensive and, for this reason, is very
widely used in both industrial and domestic control systems

— Let the output signal from the controller be u(t) and the actuating error
signal be e(t), so that

u(6) =U,, fore(t)>0
=U,, fore(t)<O
Where U, and U, are constants

Differential gap \

e | g € Ui u
—-@H— —— - + - -

- L

(a) (b)

26
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Automatic Controllers

* Proportional Control Action
— For a controller with proportional control action, the relationship between

the output of the controller u(t) and the actuating error signal e(t) is,

u(t) = Kye(t)

— or, in Laplace-transformed quantities,

U(s)
E(s) Ky

where K, is termed the proportional gain

— Whatever the actual mechanism may be and whatever the form of the
operating power, the proportional controller is essentially an amplifier with

an adjustable gain
27
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Automatic Controllers

 Integral Control Action

— Ina controller with integral control action, the value of the controller
output u(t) is changed at a rate proportional to the actuating error signal
e(t). That is,

t

d
- — Ki = Ki d
dtu(t) e(t) or u(t) joe(t) t

where K; Is an adjustable constant

— The transfer function of the integral controller is,

U(s) K;
E(s) s

28
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Automatic Controllers
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« Proportional-Plus-Integral Control Action

— The control action of a proportional-plus-integral controller is defined
by

t
u(t) = Kye(t) +%j e(t)dt
[ J0

l

where T; is called the integral time

— The transfer function of the controller is,

U(s) 1
E(s) = Kp (1 +§>

29
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Automatic Controllers
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« Proportional-Plus-Integral-Plus-Derivative Control Action
— The equation of a controller with this combined action is given by
K, rt d
p
u(t) = Kye(t) + Tjo e(t)dt + KpTdae(t)

l
where T, Is called the derivative time

— The transfer function of the controller is,

P = (14 s

E(S) p TiS

Es) | K1+ T+ T, Tash) | UE)
[

I

-

30
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Modelling of Mechanical Systems

The fundamental law governing mechanical systems is Newton’s second
law: ma = ), F, where m is the mass, a is the acceleration

Linear Translation Motion: mass, linear spring, damper (provides viscous

friction)
Mass Linear Spring Damper
— (1) A
1) k it %‘ | _mnl=
m . 34—3 VLA
VoW W b
2 d
f(£) =m——x(t) f(@) = kx(t) f&) = b—x(t)
F(s) = mSZX(S) F(s) = kX(s) F(s) = bsX(s)

31
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Modelling of Mechanical Systems

Simple Spring Systems
e Springs in Parallel

— The equivalent spring constant k, is obtained from k;x + kox = F = ko

o

i

— = X

:keq=k1+k2

“

AW
ks

A —

]

* Springs in Series

— The force in each spring is the same, thus k;y =F, k,(x —y)=F

— Elimination of y from these two equations results in,

k il —F k —F+k2F—k1+k2F
2 X kl = or Zx— kl = kl

— The equivalent spring constant k,, for this case,

k = = =
A ky+k, 1.1
k

kl 2

.ﬂ.'|

F kik, 1 AW
: %

32
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Modelling of Mechanical Systems

Simple Damper Systems il
« Dampers in Parallel Jh_l
— The force f due to the dampers is, gu B
f=bi(y—x)+by(y —x) = (by + bp)(y — %) X ¥
— The equivalent viscous-friction coefficient by, , b.q = by + b,
« Dampers in Series
— The force f due to the dampers, f = b;(z — x) = b,(y — 2)
where z is the displacement of a point between damper b, and damper b,
— Wehave, (by +b)z = byy + byt or 2 = ——(b,¥ + by %)
1 2
b, b,
b (v—2) = b |y — bov + by = S
f=by(y—2) 2 |V b1+b2( 2y + 1x)] b1+b2(y x)
"I;'I 'E']
, o f _ bbb 1 = Bem = B T
eq_y_x_b1+b2_l+i T__
by * by .

x z y 3
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Spring-Mass-Damper System
Consider the spring-mass-damper system mounted on a massless cart as
shown below. In this system, u(t) is the displacement of the cart and is the
Input to the system; and the displacement y(t) of the mass is the output
(the displacement is relative to the ground). In this system, m denotes the
mass, b denotes the viscous-friction coefficient, and k denotes the spring.

’—> u — ¥
-
Z
g
Massless cart 7 k
o "MW
\\j; i
=
”
%

A S o
34
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For translational systems, Newton’s second law states that K —
p «—
ma = Z F

Noting that the cart is massless, we obtain, -
2

d d d
m——=y(t) = =b (E y(t) — Eu(t)) —kly@®) —u®] e

k
A
\\
= B
b

Or my(t) + by(t) + ky = bu(t) + ku(t) -

()

Taking the Laplace transform and assuming zero initial condition, gives

(ms? + bs + k)Y(s) = (bs + k)U(s)
Hence, the transfer function,

Y(s)  bs+k
U(s) ms2+bs+k

G(s) =

35
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Example 6

Obtain the transfer function Y (s) / U (s) of the system below. The inputu is a
displacement input. (This is also a simplified version of an automobile or

motorcycle suspension system.)
1 T-r

Answer:
Ky ‘ ‘ b ,rl-_?g |:_ b
I . ‘ X myE = ky(y —0) + b = %) — kg (x = u) m | ¥
u Ky l .lt-_‘é

! M
m,

l l t o mpk = —ky(y —x) — b(y — %)
K, b | X

36
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Example 6

Answer:
Rearranging the terms, we have

mX + bx + kyx + kyx = kqu + by + k,y and myy + by + kyy = bx + kyx
Taking Laplace Transform (with zero initial condition),

myS2X(s) + bsX(s) + ki X(s) + k,X(5) = kU(s) + bsY(s) + k,Y(s) ﬁ

m,s? + bs + k,
bs + k2

m,s2Y(s) + bsY(s) + k,Y(s) = bsX(s) + k,X(s) ‘ Y(s) = X(s)

m,s? + bs + k,
bs + kz

(mys? + bs +ky + ky) ( ) Y(s) = kyU(s) + [bs + k,]Y ()

Y(s) k,(bs + k)
T U(S)  (mys?+bs+ ky + ky)(mys? + bs + ky) — (bs + ky)?

37
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« Basic laws governing electrical circuits are Kirchhoff’s current law and
voltage law

» Three basic elements: Resistor (R), Inductor (L) and Capacitor (C)

ZQ\ THE HONG KONG T
q b W

Resistor Inductor Capacitor
I \ L I _H\'-, (. I _\\‘-.
v(t) i) <R v(t)| it ]§ L v(t)| it)|FC
S J ] )
d _1f.
v(t) = Ri(t) v(t) = L—i(6) v(t) =7 | ilt)de
I(s)
V(s) = RI(s) V(s) = sLI(s) V(s) = —

38
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Modelling of Electrical Systems

RC Circuit
Consider the electrical circuit.
Applying Kirchhoft’s voltage law to the system, R
we obtain, W o
1 ———
i(t)R + Ej i(t)dt = e;(t) e \\l o .,
4
1
Ej i(t)dt = ey(t) o

Taking Laplace transform with zero initial conditions,
I(s) I(s)
RI(s) + = - E;(s) and = - Ey(s)

Then the transfer function of this system is,

Eo(s) _ %1(8) _ 1
E;(s) [R+%]I(s) 1+ sRC

39
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Modelling of Electrical Systems

Transfer Functions of Cascaded Elements (with loading effect)
Consider the system as shown below.

R’ R’
Assume that e; (t) is the input and e, (t) Is the output. oW WA 0
The capacitances C, and C, are not charged initially. - x
£ Oy == IL‘": — Ea
i / i “/
The equations for this systems are, ° °
P . N\ _
= f (i1 (t) — i, (t))dt + Ryi; = e;(t) SC, [11(s) — L ()] + R, (s) = Ei(s)
1

1 , , P R 1 (. dt = 0 1 1 _
C—lj(h(t) — i (t))dt — Ryi, _C_zf i (t)dt = E[ll(s) — I,(s)] — Ry15(s) _EIZ(S) =0

L @ = —hy(s) = Ea()
C—zflz(t) t = ey(t) j sC, 2 0

Laplace Transform 40
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Modelling of Electrical Systems

Transfer Functions of Cascaded Elements (with loading effect)

Eliminating 1,(s) and I,(s) from the above equations, we find the transfer
function between E_(s) and E;(s) to be

Eo(s) 1
Ei(S) B (R1C18 + 1)(R2€25 + 1) + R1C25

1
B R161R2C252 + (R1C1 + R2C2 + R1C2)S +1

» The overall transfer function of the cascaded RC circuit is not just

(rees) ()
R1C15+1 RzCzS‘l‘l

» Derive the transfer function for an isolated circuit, the output is assumed to
be unloaded, which means that no power is being withdrawn at the output

41
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Complex Impedances Method
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Write the Laplace-transformed equations directly, without writing the

differential equations

The complex impedance Z(s) of a two-terminal circuit is the ratio of E(s) to

[(s), so that Z(s) = E(s) / I(s) assumes zero initial conditions
For resistance R, capacitance C, or inductance L, then the complex

Impedance is given by R, 1/ Cs, or Ls, respectively

i i i
—_— i} —_— . —_—

O—

a-
L

Z3

Q

Q

Assume that the voltages e;(t) and e, (t) are the input and output of the

circuit

Eo(s) _  Z5(s)

Ei(s)  Zy(s)+ Zy(s)

42
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Example 7
Revisit the Transfer Functions of Cascaded Elements (with loading effect)
p.40 o @ﬁ}_ ‘uff;% o Z Zs
€ \C] — XILH] — €o ZZ Z4
L, £ |1y &
o O
Z1 =R, Iy =1 + I3
1 Ei(s) = LhZ, + 1,7,
ZZ —_—
SCl
IzZz — I3Z3 + I3Z4
Zz =R,
1 Eo(s) =132,
Zy=—
* sC, 43
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Example 7

Revisit the Transfer Functions of Cascaded Elements (with loading effect) p.40

EO(S) = Z4-13 EO(S) . Z413 _ Z413

Ei(s) = Z1; + Z,1, Ei(s) Zi,+Z,1, Z(,+ 1)+ Z,I,
L=L+I #

b= @tz Do) Zals 2als

Ei(s)  Zyls + (Zy+Z5)1,

l Z@+@ﬁ@ﬂ%ta)@

Eo(s) _ ZoZ4 (521) (Séz)
Ei(S)  Z1Zy+ (Z1+Z)Zs +Zs) R, (é) n (R1 Sé) (Rz Sé)
Eo(s) _ 1

Ei(S) B R1C1R2C252 + (R1C1 + R2C2 + R1C2)S +1

44
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Modelling of Electrical Systems

Transfer Functions of Non-loading Cascaded Elements

The transfer function of a system consisting of two non-loading cascaded elements can
be obtained by eliminating the intermediate input and output

The transfer functions of the elements are,
X, (s) X3(s)
G.(s) = and G,(s) =
! X1(s) ? X5 (s)

If the input impedance of the second element is infinite, the output of the first element is
not affected by connecting it to the second element. Then the transfer function of the

whole system becomes
G(s) = X3(s) _ X5 (s) X3(s)
X1(s)  Xi(s) Xz(s)

= G1(5)G2(5)

Xy(5) Xs(5) Xiiz) Xyi5) X5(s)

45
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Electronic Controllers

» An electronic controller is a device that compares the input signal with that of a
predetermined control point value and determines the appropriate amount of output
signal required by the final control element to provide corrective action within a control
loop.

« Operational amplifier is one of the key components of electronic controllers

Operational Amplifiers

» Operational amplifiers (op amps), are frequently used to amplify signals in sensor
circuits and filters used for compensation purposes

e —————
eo = K(ez —e1) = —K(e; — e3) o— 1y

where the inputs e, and e, may be DC or AC signals
and K is the differential gain (voltage gain) © T ©
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i R
Inverting Amplifier o
» Consider the operational-amplifier circuit e = >_‘ :
. e—e . e —g ‘i + ff,-
TR, 0 2T TR 5 0

 Since only a negligible current flows into the amplifier, the current i, must be equal to

current i, . Thus,
e;—e' e —e,

Ry R,
 Since K(0 —e') = ey and K >» 1, e’ must be almost zero, or e’ = 0. Hence, we have
ei:_eo or e :_&e_ Eo(S)__&
Ry R, ° R, E;(s) R,y

« Thus, the circuit shown is an inverting amplifier. If R; = R, , then the op-amp circuit

shown acts as a sign inverter 47
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Example 8

Obtain the transfer function of an electrical circuit involving an operational amplifier.
Answer:

. e —e . d . _e —e —
l1 = ) ly = C_ e —€p) l3 =
The current flowing into the amplifier is negligible, we O——W— >
have i; = i, + i3. Hence, £

Rz e

! !/

ei—e_Cd(, )+e — e, . .
R, “dt "% TR, L
e; d —e,
i ! ~ - = C_(_e ) +
Since e’ = 0, we have R, dt 0 R,

Taking the Laplace transform of this equation, assuming the zero initial condition, we
have

Ei(s) EG) B R
R, = SCE) === |5 T TRGCR, + D

48
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Modelling of Electrical Systems
Impedance Method to Obtaining Transfer Functions
Consider the op-amp circuit
Ei(s) —E'(s) _E'(s) — E,(s) 2 2
Z1(s) Z5(S) . T
e R E'(s) \ o
Ei(5) / E.(5
Since E'(s) ~ 0, we have
. O

Eo(s) _ Z2(s)

Ei(s) Zy(s)
Same as p.47
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Revisit Example 8

i €
Answer: T ”
ﬂ—l-—"\.";{u"t'-.,-—h
1 Rz - i R ~ -
Z1(s) =Ry, Zy(s) = 1 = 0o
Cs 4+ — R,Cs +1 .
S+ R
2 i £g
The transfer function E, (s) / E; (s) is, therefore, ° I ?
obtained as
]
- J'f]l.il
Eo(s)  Zo(s) R, NG Py }
= — = — E'(5) S S
Ei(s) Z1(s) Ri(sCRy + 1) Efs) % .
Lol 5 )
O {0

Of course, the transfer function is the same as before
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PID Controller Using Operational Amplifiers

* An electronic proportional-plus-integral-plus-derivative controller (a PID controller)
using operational amplifiers :

* The transfer function,

E (s) _ _Zz(S)
E;(s) Z1(s)
* where .
R R,C,s +1 -
7, = 1 7, = 202 X
RlCls +1 CZS o T O 0
e Thus,

E (S) _ R2CZS + 1 R1C15 + 1
E;(s) C,s R,

e The transfer function of the PID controller is,

Eo(s) Eo,(S)E(s) [ Ra R,C,s + 1\ (RiC;s +1
E(s) E(s) El-<s)‘[_R_J H C,5 )( R, >]

o1
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Modelling of Electrical Systems

PID Controller Using Operational Amplifiers

« Hence,

Eo,(s)  R4(RiCi + Ry(y) 1+ 1 N R, (1R, ( s
E;(s) R3R,C; (R1C; + R,C3)s  RiCy + R,(,

» When a PID controller is expressed as « When a PID controller is expressed as

Eo (S) 1 Eo (S) Ki
Ei(S) p ( TiS d ) Ei(S) p S as
_ R4(R1Cy + RyG,) Kp = Ra(RiCy + Ry (o)

p R3R1C2 R3R1C2
T; = R,Cy + R,C K, = —

| - " K,: Proportional gain | Rsfi

R.C.R-C D ) K,,: Proportional gain
= 17177272 T;: Integral time R,R,Cy K:): Integral gain
R.C; + R,(, T,;: Derivative time K; = R, K, Derivative gain
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Signal Flow Graphs

« SFG is another pictorial representation of a system

X1 X2 X A X
1 2
—> A » —> > o

« Every variable becomes a node and every
transmission function A is designated by a branch

* Thus, A represents the system transfer function
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Signal Flow Graphs

« Signal flow graph algebra

Addition

y=mx+c

X ® > y

The variable at a node is
equal to the sum of all
signal entering the node

Transmission

y =-3X, Z=5X y

The variable designated
by a node is transmitted
on every branch leaving
the node

Multiplication

10 y a
. @ - ®
10a

Cascades are
reduced as in
block diagrams

54



an

THE HONG KONG A Casusis Demcormn

POLYTECHNIC UNIVERSITY e
e T AR SPEED
Signal Flow Graphs

Properties

1. SFG applies only to linear systems

2. The equations for which an SFG is drawn must be algebraic equations in the
form of cause-and-effect

3. Nodes are used to represent variables. Normally, the nodes are arranged from
left to right, from the input to the output, following a succession of cause-and-
effect relations through the system

4.  Signals travel along branches only in the direction described by the arrows of
the branches.

5. The branch directing from node x,, to x; represents the dependence of x;
upon x; , but not the reverse

6. Asignal x; traveling along a branch between x;, and x; is multiplied by the

gain (Ay;) of the branch, so a signal A ;x; is delivered at x;

55
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Example 9

Construct the signal flow graph of a system described by the following set of
algebraic equations:

Xy = Aqpx1 + Azpx3

X3 = A3xy + Aszxy

Xq = ApaXy + AzaXxz + Agaxy

X5 = Apsxy + Aysxy
Answer:
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Signal Flow Graphs

Definitions

Input Node (Source): An input node is a node that has only outgoing
branches

Output Node (Sink): An output node is a node that has only incoming
branches. However, this condition is not always readily met by an output
node

Path: A path is any collection of a continuous succession of branches
traversed in the same direction

Forward Path: A path of an input node to an output node, no node is
traversed more than once

Feedback Path or Loop: Originates and ends at the same node, no node is
traversed more than once

Self Loop: A feedback loop consisting of one branch

Path Gain: Product of the branch gains encountered in traversing a path
Loop Gain: Path gain of a loop

Non-touching Loops: Two parts of an SFG are non-touching if they do not
share a common node

S7
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Signal Flow Graphs

Forward path? Feedback path? Self loop?
Gain? Path gain? Loop gain?
Input node? Output node?

D
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Signal Flow Graphs

Mason’s rule

vy 1
M=—==Y(PA
1 Ak§:1,( A

Y = Output-node variable

U = Input-node variable

N = Total number of forward paths between Y and U
P, = Gain of the kth forward paths between Y and U

A =1 — (sum of all individual loop gains) + (sum of gain products of 2 non-
touching loops) — (sum of gain products of 3 non-touching loops) + ...

A, = A evaluated with all loops touching P, eliminated (i.e. set equal to zero)59
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Example 10

Consider the signal flow graph constructed in Example 9. Determine the gain by using
the Mason’s rule.

12 ty3 oy
e F
O >
Ll
Answer:

Forward Path (2):
Loop (4):

Non-touching Loop (1):

60
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Example 10

Answer:
Try it yourself !

Vs Q12053034045 + Q12054045 + A12055(1 — A34043 — 44)

Y1 1 —ay3a3; — A34Q43 — Agq — Q404303 + Q303,044
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Signal Flow Graphs

Block diagrams and their SFG equivalent representations

Block Diagram

Signal Flow Diagrum

Simple Transler Function
1 p 1 ( uneaor Lf‘_\‘]

—

Y(s)
U{s)

= ((s)

Fis)
G(s)

Dy g 5 N ol
Parallel Feedback e, R

- G, (5)
————| :
-
+
] G:( —

Yis)

Gx)

‘ H(.\')Ar—-J

|— >
l S ()

G (s)
By hb]
Gis)

* Y9 s Yis)
.‘.l ‘lll

(.;:\ 5)
| Gils) |
Riy) O— — - — r—0 H)
U(s) Kx)
~1l{s)
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Construct a signal flow graph for the following block diagram
and hence determine the transfer function (Y / U)

Y

Y
U G, H@——» Y
<—
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Answer:
The signal flow graph of the block diagram Forward paths: R =G
L Pz = Gz
P _
: > Loops: L=&H
Ue 1 > > 1 o' L, =G,H,
»
P
H, ~A=1-(L+L)=1-GH,-G,H,

Since both loops touch P,, hencesetL, =L,=0inAtogiveA; =1
Similarly, since both loops touch P,, hence setL, =L,=0InAtogive A, =1

Y PA+PA, G +G,
U A 1-G,H, —-G,H,
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Example 12

Construct a signal flow graph for the following block diagram and hence
determine the transfer function (Y / U).
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J .
SRR G, ) G, 1 G, R
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Example 12
Answer: o
Ce—R— ¢, S & G,
H]
H.?
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Example 12

Answer:
Try it yourself !

Y G1G,Gs + GG,

“U 1= (G,G2Hy + G,GsHy — G1GoGs — G1G, + GoHy)
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