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Unit 1
Introduction to Control Systems and Elementary 

Mathematics
(Reference: [1] chapter 1, Appendices A and B )
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Introduction

• Historical Review

– James Watt (1781)

• First significant work in automatic control

• Centrifugal governor speed controller of a steam engine
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Introduction

• Historical Review

– Nyquist (1932)

• developed a relatively simple procedure for determining the 

stability of closed-loop systems on the basis of open-loop 

response to steady-state sinusoidal inputs.

– H. W. Bode (1945)

• Bode-diagram method

(frequency-response method)

– W. R. Evans (1948)

• Root-locus method

Core of classical 
control theory

Can design control systems that are in stable and acceptable, but not 
optimal in any meaningful sense. 4



Introduction

• Historical Review

– Late 1950s: focus on designing optimal systems

– 1960s: digital computers help the development of 

modern control theory to cope with the increased 

complexity of modern plants

– 1960 to 1980: optimal control of both deterministic and 

stochastic systems

– 1980 to present: focus on robust control and H control

– Recent applications to non-engineering: biological, 

biomedical, economics, …
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Definitions

• Controlled Variable and Control Signal or Manipulated Variable

– Controlled variable:  quantity or condition that is measured and controlled.  

Normally, it is the output of the system

– Control signal (or manipulated variable): quantity or condition that is varied by the 

controller so as to affect the value of the controlled variable

– Control means measuring the value of the controlled variable of the system and 

applying the control signal to the system to correct or limit deviation of controlled 

variable 

• Plants

– Any physical object to be controlled, e.g. a mechanical device, a heating furnace, a 

chemical reactor, or a spacecraft

• Processes

– Any operation to be controlled, e.g. chemical, economic, and biological processes
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Definitions

• Disturbances

– A signal that tends to adversely affect the value of the output of a system, can be 

generated internally or externally

• Feedback Control

– An operation that, in the presence of disturbances, tends to reduce the difference

between the output of a system and reference input

– Here only unpredictable disturbances are so specified, since predictable or known 

disturbances can always be compensated for within the system.
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Examples of Control Systems

• Speed Control System
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• Plant  (controlled system): Engine

• Controlled variable: speed of the engine

• Error signal: difference between desired speed 

and actual speed

• Control signal: the amount of fuel

• Disturbance: unexpected change in the load

Watt’s speed governor for an engine.



Examples of Control Systems

• Temperature Control System
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• Plant  (controlled system): electric furnace

• Controlled variable: temperature of the furnace

• Error signal: difference between desired and actual temperature

• Control signal: the current of the heater

• Disturbance: heat loss in the electric furnace



Closed-loop Control Versus Open-loop Control

• Feedback Control Systems
– A system that maintains a prescribed relationship between the 

output and the reference input by comparing them and using the 
difference as a means of control

– Examples: room temperature control system, human body

• Closed-loop Control System
– The actuating error signal (the difference between the reference 

input signal and the feedback (or output) signal) is fed to the 
controller so as to reduce the error and bring the output of the 
system to a desired value

The terms feedback control and closed-loop control are used 
interchangeably. 

10



Closed-loop Control Versus Open-loop Control

• Open-loop Control System

– The output has no effect on the control action, i.e. neither 

measured nor fed back for comparison with the input

– The accuracy of the system depends on calibration

– only if the relationship between the input and output is known 

and if there are neither internal nor external disturbances

– Example: washing machine, traffic control by means of signals 

(operate on a time basis)
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Closed-loop Control Versus Open-loop Control

• Closed-loop and Open-loop Control Systems
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Design and Compensation of Control System

• Compensation

– modification of the system dynamics to satisfy the given  
specifications

– Examples: root-locus [Unit 4], and frequency-response (Bode 
diagram) [Unit 5]

• Performance Specifications

– The requirements imposed on the control system

– May be given in terms of transient response and steady-state 
requirements [Unit 3], or frequency-response requirements [Unit 
5]

– May be given in terms of precise numerical or qualitative 
statements

– Examples: accuracy, relative stability, speed of response
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Design and Compensation of Control System

• System Compensation

– Adjusting the system gain value will improve the steady-state 

behavior but will result in poor stability or even instability. 

– Modifying the structure (redesign) or by incorporating additional 

devices or components to alter the overall behavior 

– A device inserted into the system for the purpose of satisfying 

the specifications is called a compensator [Unit 6]
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Design and Compensation of Control System

• Design Procedures

1. Set up a mathematical model of the control system and adjust the 
parameters of a compensator

2. Checking of the system performance by analysis with each 
adjustment of the parameters (use available computer software to 
avoid much of the numerical drudgery necessary for this checking)

3. Construct a prototype and test the open-loop system after obtaining a 
satisfactory mathematical models

4. Close the loop and test the performance of the resulting closed-loop 
system in case that absolute stability of the closed loop is assured

5. Adjust system parameters and make changes in the prototype until the 
system meets the specifications  by analyzing each trial, and the 
results of the analysis must be incorporated into the next trial

The final system meets the performance specifications; and is reliable 
and economical
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Review on Calculus

Solution of Quadratic Equations

• An equation of the form (𝑎 ≠ 0), is said to be a 

quadratic equation

• The equation can have at most 2 solutions (or roots)

• The solutions can be obtained by factorization or Quadratic Formula

𝑥 =
−𝑏 ± 𝑏2 − 4𝑎𝑐

2𝑎
• The term, , is called the discriminant
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YouTube video

Discriminant Nature of Roots Roots

Case 1: > 0 2 distinct real roots
𝑥1 =

−𝑏+ 𝑏2−4𝑎𝑐

2𝑎
and 𝑥2 =

−𝑏− 𝑏2−4𝑎𝑐

2𝑎

Case 2: = 0 Double real roots 𝑥1 = 𝑥2 = −
𝑏

2𝑎

Case 3: < 0 No real roots ⇒ 2 
complex roots

𝑥1 =
−𝑏+𝑗 4𝑎𝑐−𝑏2

2𝑎
and 𝑥2 =

−𝑏−𝑗 4𝑎𝑐−𝑏2

2𝑎

https://www.youtube.com/watch?v=qeByhTF8WEw


Example 1
Solve the equations, (a) 2𝑥2 + 3𝑥 + 1 = 0, (b) 𝑥2 + 6𝑥 + 9 = 0, and (c) 

𝑥2 + 2𝑥 + 5 = 0.

Answer:

(a) a = 2, b = 3, c =1,

(b) a = 1, b = 6, c = 9,  

(c) a = 1, b = 2, c = 5, 
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𝑥 =
−3 ± 32 − 4(2)(1)

2(2)

𝑥1 =
−3 + 9 − 8

4
= −0.5

𝑥2 =
−3 − 9 − 8

4
= −1

Case 1: two real roots

𝑥 =
−6 ± 62 − 4(1)(9)

2(1)
= −3

Case 2: double real 
roots

𝑥 =
−2 ± 22 − 4(1)(5)

2(1)
=
−2 ± −16

2

𝑥1 = −1 + 𝑗2

𝑥2 = −1 − 𝑗2

Case 3: no real roots (2 complex roots) Complex conjugate



Review on Calculus

Complex Number

• The following equation is not solvable in ℝ

• Then, we introduce a new number (it is not real), denoted by i

• This number is quite useful in studying electricity and sometimes 

it is denoted by j

• Hence, we have 
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𝑖2 + 1 = 0, 𝑖 = −1

z = a + jb

Real part (Re)

Imaginary part (Im)

Imaginary unit (j2 = −1)



Review on Calculus
Complex Number

• A complex conjugate is found by changing the sign of the imaginary 

part from positive to negative (or negative to positive) of a complex 

number (Example 1)

• Complex Plane
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𝑧 = 𝑎 + 𝑗𝑏, ҧ𝑧 = 𝑎 − 𝑗𝑏

x

y

(a + jb)

a

b

r

q

Real Axis (Re)

Imaginary Axis (Im)

Rectangular Form: 
𝑧 = 𝑎 + 𝑗𝑏

Polar Form: 
𝑧 = 𝑟∠𝜃

Complex conjugate 
in polar form?

Equations for changing 
rectangular and polar forms?

Polar form of real number, 1 and -2 ?



Review on Calculus

Ordinary Differential Equations

• Focus on 2nd order homogenous equations with constant coefficients

ሷ𝑦 + 𝑎 ሶ𝑦 + 𝑏𝑦 = 0

• Consider the characteristic equation (or auxiliary equation), we have

𝜆2 + 𝑎𝜆 + 𝑏 = 0

• It’s now like a quadratic equation!

• Hence, the general solution of the 2nd order differential equation will be
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Case Roots General Solution

1 (> 0) Distinct real: 𝜆1 , 𝜆2 𝑦 = 𝑐1𝑒
𝜆1𝑥 + 𝑐2𝑒

𝜆2𝑥

2 (= 0) Double real: 𝜆 = −
𝑎

2 𝑦 = 𝑐1 + 𝑐2𝑥 𝑒
−𝑎𝑥
2

3 (< 0) Complex conjugate:

𝜆1 =
−𝑎+𝑗𝜔

2
, 𝜆2 =

−𝑎−𝑗𝜔

2
𝑦 = 𝑒

−𝑎𝑥
2 𝐴 cos𝜔𝑥 + 𝐵 sin𝜔𝑥

YouTube video

https://www.youtube.com/watch?v=uI2xt8nTOlQ


Review on Calculus

Partial Fraction Decomposition
• Use to find the inverse of Laplace transform

• In control systems analysis, F(s), usually occurs in the form 𝐹 𝑠 =
𝐴(𝑠)

𝐵(𝑠)
, 

where A(s) and B(s) are polynomials

For example,
2𝑠 + 5

𝑠2 + 3𝑠 + 2
=

3

𝑠 + 1
−

1

𝑠 + 2

• There are 4 types of partial fraction decomposition

(1) Non-repeated linear factors in denominator
𝐹(𝑠)

𝑠 + 𝑎 𝑠 + 𝑏 𝑠 + 𝑐
=

𝐴

𝑠 + 𝑎
+

𝐵

𝑠 + 𝑏
+

𝐶

𝑠 + 𝑐

(2) Repeated linear factor in denominator
𝐹(𝑠)

(𝑠 + 𝑎)𝑛
=

𝐴

𝑠 + 𝑎 𝑛
+⋯+

𝑋

𝑠 + 𝑎 2
+

𝑌

𝑠 + 𝑎
21

YouTube video

https://www.youtube.com/watch?v=6rXByMcuAyI


Review on Calculus

Partial Fraction Decomposition

(3) Non-repeated quadratic factors in denominator

𝐹(𝑠)

𝑠2 + 𝑎𝑠 + 𝑏 𝑠2 + 𝑐𝑠 + 𝑑
=

𝐴𝑠 + 𝐵

𝑠2 + 𝑎𝑠 + 𝑏
+

𝐶𝑠 + 𝐷

𝑠2 + 𝑐𝑠 + 𝑑

(4) Repeated quadratic factor in denominator

𝐹(𝑠)

(𝑠2 + 𝑎𝑠 + 𝑏)𝑛
=

𝐴𝑠 + 𝐵

𝑠2 + 𝑎𝑠 + 𝑏 𝑛
+⋯+

𝑊𝑠 + 𝑋

𝑠2 + 𝑎𝑠 + 𝑏 2
+

𝑌𝑠 + 𝑍

𝑠2 + 𝑎𝑠 + 𝑏
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Example 2
Find the partial fraction of 

1

𝑠2 − 9

Answer:

Write 
1

𝑠2 − 9
=

𝐴

𝑠 + 3
+

𝐵

𝑠 − 3
=
𝐴 𝑠 − 3 + 𝐵(𝑠 + 3)

𝑠2 − 9
So that

𝐴 𝑠 − 3 + 𝐵 𝑠 + 3 = 1

Put s = 3, and s = −3 respectively on both sides of the above equality. We have, 

𝐴 3 − 3 + 𝐵 3 + 3 = 1 ⇒ 𝐵 =
1

6

𝐴 −3 − 3 + 𝐵 −3 + 3 = 1 ⇒ 𝐴 = −
1

6

∴
1

𝑠2 − 9
= −

1

6

1

𝑠 + 3
+
1

6

1

𝑠 − 3
23

𝑠 =
0 ± 02 − 4(1)(−9)

2(1)
= ±3



Example 3

Find the partial fraction of 

Answer:

Write 
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1

𝑠 𝑠 + 2
.

1

𝑠 𝑠 + 2
=
𝐴

𝑠
+

𝐵

𝑠 + 2
=
𝐴 𝑠 + 2 + 𝐵𝑠

𝑠(𝑠 + 2)

𝐴(𝑠 + 2) + 𝐵𝑠 = 1

𝑠 = −2, −2𝐵 = 1

𝑠 = 0, 2𝐴 = 1 ⇒ 𝐴 =
1

2

⇒ 𝐵 = −
1

2

∴
1

𝑠 𝑠 + 2
=
1

2

1

𝑠
−
1

2

1

𝑠 + 2



Laplace Transform: Introduction

• Time domain and transform domain

– The study of control systems, linear systems and signal 

processing will usually analyse the systems or signals either in 

time domain or other transform domain

– Transform domain: Laplace, Fourier and z-transforms

• Fourier, Laplace and z-transforms

– Fourier transform (FT) decomposes a function of time (a signal) 

into its constituent frequencies  Frequency domain

– Laplace transform (LT) transforms a function of a real variable t

(often time) to a function of a complex variable s  s-domain

– Z-transform is considered as a discrete-time equivalent of the 

Laplace transform  z-domain
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The Laplace Transform

• Convert sinusoidal, exponential functions into algebraic 

functions

• Use to solve linear differential equations  algebraic 

equations in a complex variable s

• Simultaneously obtain both transient component and steady-

state components
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Laplace 
Transformation

Inverse Laplace 
Transformation

Time domain Time domain
s-domain

Behaviour

described by 

differential 

equation

Algebraic 

manipulation 

of equations
Solution



The Laplace Transform

ℒ 𝑓(𝑡) = 𝐹 𝑠 = න
0

∞

𝑒−𝑠𝑡𝑓 𝑡 𝑑𝑡

Inverse Laplace Transform

ℒ−1 𝐹(𝑠) = 𝑓 𝑡 =
1

2𝜋𝑗
∞𝑐−𝑗׬
𝑐+𝑗∞

𝐹 𝑠 𝑒𝑠𝑡𝑑𝑠 , for 𝑡 > 0
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f (t) = a function of time t such that f (t) = 0 for t < 0

s = a complex variable (= 𝜎 + 𝑗𝜔)

ℒ = Laplace transform operator

F(s) = Laplace transform of f (t)

ℒ−1 = Inverse Laplace transform operator

c = the abscissa of convergences, a real constant and is chosen larger than 

the real parts of all singular points of F(s)



Properties and Theorem

Addition and Subtraction

ℒ 𝑓1 𝑡 ± 𝑓2(𝑡) = ℒ 𝑓1(𝑡) ± ℒ 𝑓2(𝑡) = 𝐹1(𝑠) ± 𝐹2(𝑠)

Multiplication

ℒ 𝐴𝑓(𝑡) = 𝐴ℒ 𝑓(𝑡) = 𝐴𝐹(𝑠)
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Properties and Theorem

• Differentiation

ℒ
𝑑

𝑑𝑡
𝑓(𝑡) = 𝑠𝐹 𝑠 − 𝑓(0)

where f (0) is the initial value of f (t) evaluated at t = 0

• Integration

ℒ න𝑓 𝑡 𝑑𝑡 =
𝐹(𝑠)

𝑠
+
𝑓−1(0)

𝑠

where 𝑓−1 0 = 𝑓׬ 𝑡 𝑑𝑡 evaluated at t = 0
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Properties and Theorem

• Final Value Theorem

𝑓 ∞ = lim
𝑡→∞

𝑓(𝑡) = lim
𝑠→0

𝑠𝐹(𝑠)

where lim
𝑡→∞

𝑓(𝑡) exists

It relates to the steady-state behaviour of f (t) to the behaviour of sF(s)

• Initial Value Theorem

𝑓 0+ = lim
𝑠→∞

𝑠𝐹(𝑠)

where t > 0

It is the counterpart of the final value theorem
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Step Function

𝑓 𝑡 ቊ
= 0, for 𝑡 < 0
= 𝐴, for 𝑡 > 0

ℒ 𝑓(𝑡) = 𝐹 𝑠 = න
0

∞

𝑒−𝑠𝑡 𝐴 𝑑𝑡 = −
A

𝑠
𝑒−𝑠𝑡 0

∞ =
𝐴

𝑠

31

t
0

A



Ramp Function

𝑓 𝑡 ቊ
= 0, for 𝑡 < 0
= 𝐴𝑡, for 𝑡 ≥ 0

ℒ 𝑓(𝑡) = 𝐹 𝑠 = න
0

∞

𝑒−𝑠𝑡 𝐴𝑡 𝑑𝑡 = 𝐴
−𝑡𝑒−𝑠𝑡

𝑠
0

∞

−න
0

∞𝐴𝑒−𝑠𝑡

−𝑠
𝑑𝑡

=
𝐴

𝑠
න
0

∞

𝑒−𝑠𝑡𝑑𝑡 =
𝐴

𝑠2
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t
0 1

A



Example 4

Use the Laplace Transform Table to determine the Laplace Transform 

of the following functions:

(a) 𝑡𝑒4𝑡 and    (b)  𝑒−5𝑡 sin 377𝑡

Answer: 
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Example 5
Find the solution of x(t) of the differential equation with zero initial 

condition, 𝑥′′ 𝑡 + 2𝑥′ 𝑡 − 3𝑥 𝑡 = 3, using Laplace Transform

Answer:

From the Laplace transform table,

𝑠2𝑋 𝑠 − 𝑠𝑥 0 − 𝑥′ 0 + 2 𝑠𝑋 𝑠 − 𝑥 0 − 3𝑋 𝑠 =
3

𝑠
With zero initial condition, 𝑥 0 = 0, 𝑥′ 0 = 0. We have,

𝑠2𝑋 𝑠 + 2𝑠𝑋 𝑠 − 3𝑋 𝑠 =
3

𝑠

𝑠2 + 2𝑠 − 3 𝑋(𝑠) =
3

𝑠

∴ 𝑋 𝑠 =
3

𝑠 𝑠2 + 2𝑠 − 3
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Example 5

Answer:

𝑋 𝑠 =
3

𝑠 𝑠2 + 2𝑠 − 3
=

3

𝑠 𝑠 + 3 𝑠 − 1

By partial fraction decomposition,

𝑋 𝑠 =
𝐴

𝑠
+

𝐵

𝑠 + 3
+

𝐶

𝑠 − 1
=
𝐴 𝑠 − 1 𝑠 + 3 + 𝐵𝑠 𝑠 − 1 + 𝐶𝑠(𝑠 + 3)

𝑠 𝑠 + 3 𝑠 − 1

So that,

𝐴 𝑠 + 3 𝑠 − 1 + 𝐵𝑠 𝑠 − 1 + 𝐶𝑠 𝑠 + 3 = 3

Put s = 0, s = −3, and s = 1 respectively on both sides of the above equality. We 

have
𝐴 0 + 3 0 − 1 + 𝐵 0 0 − 1 + 𝐶 0 0 + 3 = 3 ⟹ 𝐴 = −1

𝐴 −3 + 3 −3 − 1 + 𝐵 −3 −3 − 1 + 𝐶 −3 −3 + 3 = 3 ⟹ 𝐵 =
1

4

𝐴 1 + 3 1 − 1 + 𝐵 1 1 − 1 + 𝐶 1 1 + 3 = 3 ⟹ 𝐶 =
3

4
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Example 5

Answer:

By partial fraction expansion,

𝑋 𝑠 =
−1

𝑠
+

1
4

𝑠 + 3
+

3
4

𝑠 − 1

Hence, the inverse Laplace transform becomes,

∴ 𝑥 𝑡 = −1 +
1

4
𝑒−3𝑡 +

3

4
𝑒𝑡
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Example 6
Find the solution of v(t) of the differential equation with zero initial condition,

2𝑣 𝑡 +
1

2
𝑣′(𝑡) = 𝑢𝑠(𝑡)

Answer:

Taking Laplace Transform, we have 

2𝑉 𝑠 +
1

2
𝑠𝑉 𝑠 − 𝑣(0) =

1

𝑠
With zero initial condition and rearranging the terms, we have

2𝑉 𝑠 +
1

2
𝑠𝑉 𝑠 =

1

𝑠
→ 𝑉 𝑠 2 +

1

2
𝑠 =

1

𝑠
→ 𝑉 𝑠 =

2

𝑠(𝑠 + 4)

Taking Inverse Laplace Transform from the Table, we have

𝑣 𝑡 = 2
1

4
1 − 𝑒−4𝑡 =

1

2
1 − 𝑒−4𝑡
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