

SPEED

# SEHS4653 Control System Analysis Tutorial Questions (Part 4)

## Polar (Nyquist) Plot

1. Sketch the Nyquist plot for the system,

$$G(s) = \frac{1}{s(s+1)}$$

2. Given the open-loop transfer function of a system,

$$G(s)H(s) = \frac{K}{s(s+1)(2s+1)}.$$

- (a) Sketch the Nyquist plot of the above system with K = 2.
- (b) Use Nyquist stability criterion to determine the absolute stability of the closed-loop system.
- (c) Find the critical value of gain *K* for stability.

(Ans: (b) unstable; (c) 0 < K < 3/2)

## Nichols Chart

3. Open-loop frequency response tests on a control system with unity gain negative feedback yield the following data.

| Frequency | Gain             | Phase    |
|-----------|------------------|----------|
| ω (rad/s) | (Output / Input) | (degree) |
| 0.4       | 2.452            | -101.31  |
| 0.8       | 1.161            | -111.80  |
| 1.2       | 0.715            | -120.96  |
| 1.4       | 0.585            | -124.99  |
| 1.8       | 0.413            | -131.99  |
| 2.0       | 0.354            | -135.00  |
| 4.0       | 0.112            | -153.43  |
| 8.0       | 0.030            | -165.96  |

A first-order lag with a time constant of 1 sec,  $G_1(s) = \frac{1}{s+1}$ , is now inserted in the forward path of the control loop. Use a Nichols chart to determine for the modified system

- (a) the gain margin;
- (b) the phase margin.

(Ans: (a) 9.4 dB; (b) 33°)





4. A closed-loop control system consists of three elements A, B and C in series in the forward path and a unity gain feedback loop.

Component A is an amplifier with gain G.

Component B has the transfer function  $\frac{1}{1+0.2s}$ .

The transfer function of component C is not known, but frequency response tests on this component give the following results.

| Frequency | Gain             | Phase    |
|-----------|------------------|----------|
| ω (rad/s) | (Output / Input) | (degree) |
| 5.0       | 0.894            | -63.26   |
| 7.0       | 0.714            | -89.12   |
| 10.0      | 0.447            | -116.34  |
| 10.8      | 0.394            | -121.42  |
| 20.0      | 0.124            | -152.39  |

- (a) Show that if G > 5, the system will be unstable.
- (b) If the gain G is fixed at 6, the system can be stabilized by putting an additional component with transfer function,  $G_p(s) = 1 + Ks$ , in series with A, B and C. Show that neutral stability now occurs when K = 0.0111.

### **Compensators / Controllers Design**

5. An open-loop frequency response test on a unit feedback control system produced the data below.

| Frequency | Gain  | Phase    |
|-----------|-------|----------|
| ω (rad/s) | (dB)  | (degree) |
| 0.3       | 20    | -19      |
| 1         | 18    | -51      |
| 3         | 10.5  | -91      |
| 6         | 5     | -116     |
| 10        | -1    | -135     |
| 20        | -12   | -163     |
| 30        | -19   | -177     |
| 60        | -31.5 | -201     |
| 100       | -40   | -218     |

- (a) A phase-lead series compensating network, having the transfer function,  $G_c(s) = \frac{0.4(1+0.08s)}{1+0.032s}$ , is then incorporated to improve the system performance. Plot the gain and phase characteristics on a Nichols' chart.
- (b) If the system gain is then increased by 16 dB, determine the characteristics of the compensated



School of Professional Education and Executive Development 專棄盜修學院



system the resulting (i) gain margin; (ii) and phase margin. (Ans: (b)(i) 14.6 dB, (b)(ii) 43°)

6. Consider the control system shown below in which a PID controller is used to control the system. The PID controller has the transfer function,

$$G_c(s) = K_p \left( 1 + \frac{1}{T_i s} + T_d s \right).$$

Although many analytical methods are available for the design of a PID controller for the present system, lets us apply Ziegler-Nichols tuning rule for the determination of the values of parameters  $K_p$ ,  $T_i$ , and  $T_d$ .

(Ans:  $K_p = 18$ ,  $T_i = 1.405$ ,  $T_d = 0.351$ )



### **State Space Analysis**

7. Consider a system defined by the following state-space equations:

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -5 & -1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \end{bmatrix} u \text{ and } y = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Obtain the transfer function G(s) of the system. (Ans:  $G(s) = \frac{12s+59}{s^2+6s+8}$ )

8. For the system shown below, find the state-space equations and calculate the state transition matrix in time domain.

$$V(s) + \underbrace{5}_{s+2} X_{2}(s) + \underbrace{1}_{s+4} X_{1}(s) = Y(s)$$

$$(Ans: \begin{bmatrix} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \end{bmatrix} = \begin{bmatrix} -4 & 1 \\ -5 & -2 \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 5 \end{bmatrix} v(t), y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \end{bmatrix},$$

$$\phi(t) = \begin{bmatrix} e^{-3t} \cos(2t) - \frac{1}{2}e^{-3t} \sin(2t) & \frac{1}{2}e^{-3t} \sin(2t) \\ -\frac{5}{2}e^{-3t} \sin(2t) & e^{-3t} \cos(2t) + \frac{1}{2}e^{-3t} \sin(2t) \end{bmatrix},$$





9. Obtaint the state space equations for the following circuit.



End of Tutorial Questions (Part 4)