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SEHS4653 Control System Analysis 
Tutorial Questions (Part 4) 

 
Polar (Nyquist) Plot 
 
1. Sketch the Nyquist plot for the system, 
 𝐺𝐺(𝑠𝑠) =

1
𝑠𝑠(𝑠𝑠 + 1)

 . 

  
2. Given the open-loop transfer function of a system, 
 𝐺𝐺(𝑠𝑠)𝐻𝐻(𝑠𝑠) =

𝐾𝐾
𝑠𝑠(𝑠𝑠 + 1)(2𝑠𝑠 + 1). 

  
 (a) Sketch the Nyquist plot of the above system with K = 2. 
 (b) Use Nyquist stability criterion to determine the absolute stability of the closed-loop system. 
 (c) Find the critical value of gain K for stability. 
 (Ans: (b) unstable; (c) 0 < 𝐾𝐾 < 3/2) 

  
 

Nichols Chart 
  
3. Open-loop frequency response tests on a control system with unity gain negative feedback yield the 

following data. 
  
 Frequency 

ω (rad/s) 
Gain 

(Output / Input) 
Phase 

(degree) 
0.4 2.452 −101.31 
0.8 1.161 −111.80 
1.2 0.715 −120.96 
1.4 0.585 −124.99 
1.8 0.413 −131.99 
2.0 0.354 −135.00 
4.0 0.112 −153.43 
8.0 0.030 −165.96 

 

  
 A first-order lag with a time constant of 1 sec, 𝐺𝐺1(𝑠𝑠) = 1

𝑠𝑠+1
 , is now inserted in the forward path of the 

control loop.  Use a Nichols chart to determine for the modified system 
  
 (a) the gain margin; 
 (b) the phase margin. 
 (Ans: (a) 9.4 dB; (b) 33°) 
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4. A closed-loop control system consists of three elements A, B and C in series in the forward path and a 
unity gain feedback loop. 

  
 Component A is an amplifier with gain G. 
  
 Component B has the transfer function 1

1+0.2𝑠𝑠
 . 

  
 The transfer function of component C is not known, but frequency response tests on this component give 

the following results. 
  
 Frequency 

ω (rad/s) 
Gain 

(Output / Input) 
Phase 

(degree) 
5.0 0.894 −63.26 
7.0 0.714 −89.12 
10.0 0.447 −116.34 
10.8 0.394 −121.42 
20.0 0.124 −152.39 

 

  
 (a) Show that if G > 5, the system will be unstable. 
 (b) If the gain G is fixed at 6, the system can be stabilized by putting an additional component with 

transfer function, 𝐺𝐺𝑝𝑝(𝑠𝑠) = 1 + 𝐾𝐾𝐾𝐾, in series with A, B and C.  Show that neutral stability now 
occurs when K = 0.0111. 

   
   
Compensators / Controllers Design 
   
5. An open-loop frequency response test on a unit feedback control system produced the data below. 
  
 Frequency 

ω (rad/s) 
Gain 
(dB) 

Phase 
(degree) 

0.3 20 −19 
1 18 −51 
3 10.5 −91 
6 5 −116 
10 −1 −135 
20 −12 −163 
30 −19 −177 
60 −31.5 −201 
100 −40 −218 

 

  
 (a) A phase-lead series compensating network, having the transfer function, 𝐺𝐺𝑐𝑐(𝑠𝑠) = 0.4(1+0.08𝑠𝑠)

1+0.032𝑠𝑠
 , is 

then incorporated to improve the system performance.  Plot the gain and phase characteristics on a 
Nichols’ chart. 

   
 (b) If the system gain is then increased by 16 dB, determine the characteristics of the compensated 
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system the resulting 
  (i) gain margin; 
  (ii) and phase margin. 
 (Ans: (b)(i) 14.6 dB, (b)(ii) 43°) 
   
6. Consider the control system shown below in which a PID controller is used to control the system.  The 

PID controller has the transfer function, 
 

𝐺𝐺𝑐𝑐(𝑠𝑠) = 𝐾𝐾𝑝𝑝 �1 +
1
𝑇𝑇𝑖𝑖𝑠𝑠

+ 𝑇𝑇𝑑𝑑𝑠𝑠�. 

 
Although many analytical methods are available for the design of a PID controller for the present 
system, lets us apply Ziegler-Nichols tuning rule for the determination of the values of parameters Kp, Ti, 
and Td. 

 (Ans: Kp =18, Ti =1.405, Td =0.351) 
 

 
  
  
State Space Analysis 
  
7. Consider a system defined by the following state-space equations: 
 �

𝑥𝑥1
𝑥𝑥2� = �−5 −1

3 −1� �
𝑥𝑥1
𝑥𝑥2� + �25� 𝑢𝑢  and    𝑦𝑦 = [1 2] �

𝑥𝑥1
𝑥𝑥2� 

 Obtain the transfer function G(s) of the system. 
 (Ans: 𝐺𝐺(𝑠𝑠) = 12𝑠𝑠+59

𝑠𝑠2+6𝑠𝑠+8
) 

  
  
8. For the system shown below, find the state-space equations and calculate the state transition matrix in 

time domain. 
 

 
 (Ans:�𝑥̇𝑥1

(𝑡𝑡)
𝑥̇𝑥2(𝑡𝑡)� = �−4 1

−5 −2� �
𝑥𝑥1(𝑡𝑡)
𝑥𝑥2(𝑡𝑡)� + �05� 𝑣𝑣

(𝑡𝑡), 𝑦𝑦(𝑡𝑡) = [1 0] �𝑥𝑥1
(𝑡𝑡)

𝑥𝑥2(𝑡𝑡)�, 

𝜙𝜙(𝑡𝑡) = �
𝑒𝑒−3𝑡𝑡 cos(2𝑡𝑡) − 1

2
𝑒𝑒−3𝑡𝑡 sin(2𝑡𝑡) 1

2
𝑒𝑒−3𝑡𝑡 sin(2𝑡𝑡)

−5
2
𝑒𝑒−3𝑡𝑡 sin(2𝑡𝑡) 𝑒𝑒−3𝑡𝑡 cos(2𝑡𝑡) + 1

2
𝑒𝑒−3𝑡𝑡 sin(2𝑡𝑡)

�  ) 

 
 
 
 
 
 
 

+

−

R(s) C(s)1Gc(s)
s(s + 1)(s + 5)
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9. Obtaint the state space equations for the following circuit. 
 

 
 

 
(Ans: �

𝑥̇𝑥1(𝑡𝑡)
𝑥̇𝑥2(𝑡𝑡)
𝑥̇𝑥3(𝑡𝑡)

� =

⎣
⎢
⎢
⎢
⎡ 0 0 1

𝐶𝐶

0 − 𝑅𝑅
𝐿𝐿1

𝑅𝑅
𝐿𝐿1

− 1
𝐿𝐿2

𝑅𝑅
𝐿𝐿2

− 𝑅𝑅
𝐿𝐿2⎦
⎥
⎥
⎥
⎤
�
𝑥𝑥1(𝑡𝑡)
𝑥𝑥2(𝑡𝑡)
𝑥𝑥3(𝑡𝑡)

�+ �
0
1
𝐿𝐿1
0
�𝑢𝑢(𝑡𝑡), 𝑦𝑦(𝑡𝑡) = [1 0 0] �

𝑥𝑥1(𝑡𝑡)
𝑥𝑥2(𝑡𝑡)
𝑥𝑥3(𝑡𝑡)

�) 

 
 

End of Tutorial Questions (Part 4) 
 


