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SEHS4653 Control System Analysis 
Tutorial Questions (Part 2) Solution 

 
1. (a) The closed-loop transfer function, 

𝐶𝐶(𝑠𝑠)
𝑅𝑅(𝑠𝑠)

=

25
𝑠𝑠(𝑠𝑠 + 2)

1 + 25
𝑠𝑠(𝑠𝑠 + 2)

=
25

𝑠𝑠(𝑠𝑠 + 2) + 25
=

25
𝑠𝑠2 + 2𝑠𝑠 + 25

 

 
Compared the above transfer function with the 2nd order system, we have 

𝐶𝐶(𝑠𝑠)
𝑅𝑅(𝑠𝑠)

=
25

𝑠𝑠2 + 2𝑠𝑠 + 25
=

𝜔𝜔𝑛𝑛2

𝑠𝑠2 + 2𝜁𝜁𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2
 

 
Equating terms, we have   2𝜁𝜁𝜔𝜔𝑛𝑛 = 2, 𝜔𝜔𝑛𝑛2 = 25 
∴ 𝜔𝜔𝑛𝑛 = 5 rad/s, (2𝜁𝜁)(5) = 2 ⇒ 𝜁𝜁 = 0.2 
 
Since 𝜔𝜔𝑑𝑑 = 𝜔𝜔𝑛𝑛�1 − 𝜁𝜁2 = (5)�√1 − 0.22� = 4.899 rad/s 

   
 (b) The unit-step response, 

𝐶𝐶(𝑠𝑠) =
25

𝑠𝑠2 + 2𝑠𝑠 + 25
1
𝑠𝑠

 
 
Taking inverse Laplace transform, we have 
 

𝑐𝑐(𝑡𝑡) = 1 −
1

√1 − 0.22
𝑒𝑒−(0.2)(5)𝑡𝑡 sin �5�1 − 0.22𝑡𝑡 + 𝜙𝜙� ,𝜙𝜙 = cos−1 0.2 

 
∴ 𝑐𝑐(𝑡𝑡) = 1 − 1.021𝑒𝑒−𝑡𝑡 sin(4.899𝑡𝑡 + 1.369) 

   
 (c) Rise time: 

𝑡𝑡𝑟𝑟 =
𝜋𝜋 − 𝛽𝛽
𝜔𝜔𝑑𝑑

=
𝜋𝜋 − 1.3694

4.899
= 0.362 sec 

 

𝛽𝛽 = tan−1 𝜔𝜔𝑑𝑑

𝜁𝜁𝜔𝜔𝑛𝑛
= tan−1 4.899

(0.2)(5)
= 1.3694  rad 

  

Peak time: 𝑡𝑡𝑝𝑝 =
𝜋𝜋
𝜔𝜔𝑑𝑑

=
𝜋𝜋

4.899
= 0.641 sec 

  

2% Settling time: 𝑡𝑡𝑠𝑠 =
4
𝜁𝜁𝜔𝜔𝑛𝑛

=
4

(0.2)(5)
= 4 sec 

  

% of overshoot: 𝑀𝑀𝑝𝑝 = 𝑒𝑒
− 𝜁𝜁
�1−𝜁𝜁2

 𝜋𝜋
= 𝑒𝑒

− 0.2
√1−0.22

 𝜋𝜋
= 0.5266 (or 52.66%) 
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2. (a) The closed-loop transfer function of the system, 

𝐶𝐶(𝑠𝑠)
𝑅𝑅(𝑠𝑠)

=
(1 + 𝑘𝑘𝑠𝑠) 25

𝑠𝑠(𝑠𝑠 + 2)

1 + (1 + 𝑘𝑘𝑠𝑠) 25
𝑠𝑠(𝑠𝑠 + 2)

=
25(1 + 𝑘𝑘𝑠𝑠)

𝑠𝑠(𝑠𝑠 + 2) + 25(1 + 𝑘𝑘𝑠𝑠)
=

25(1 + 𝑘𝑘𝑠𝑠)
𝑠𝑠2 + (2 + 25𝑘𝑘)𝑠𝑠 + 25

 

 
Equating the terms with the 2nd order equation, we have 

𝜔𝜔𝑛𝑛2 = 25 ⇒ 𝜔𝜔𝑛𝑛 = 5 rad/s 
 
2𝜁𝜁𝜔𝜔𝑛𝑛 = 2 + 25𝑘𝑘 ⇒ (2)(0.5)(5) = 2 + 25𝑘𝑘 ⇒ 𝑘𝑘 = 0.12 

   
 (b) The unit-step response of the system,  

 

𝐶𝐶(𝑠𝑠) = �
25(1 + 0.12𝑠𝑠)

𝑠𝑠2 + �2 + 25(0.12)�𝑠𝑠 + 25
� �

1
𝑠𝑠
� = �

3𝑠𝑠 + 25
𝑠𝑠2 + 5𝑠𝑠 + 25

� �
1
𝑠𝑠
� 

 
Rearrange the above equation, we have 

𝐶𝐶(𝑠𝑠) =
3𝑠𝑠 + 25

𝑠𝑠(𝑠𝑠2 + 5𝑠𝑠 + 25) =
3𝑠𝑠

𝑠𝑠(𝑠𝑠2 + 5𝑠𝑠 + 25) +
25

𝑠𝑠(𝑠𝑠2 + 5𝑠𝑠 + 25)

=
3

25
25

𝑠𝑠2 + 5𝑠𝑠 + 25
+

25
𝑠𝑠(𝑠𝑠2 + 5𝑠𝑠 + 25) 

 
Taking inverse Laplace transform, we have 
 

𝑐𝑐(𝑡𝑡) = �
3

25
� �

5
√1 − 0.52

𝑒𝑒−(0.5)(5)𝑡𝑡 sin�5�1 − 0.52𝑡𝑡�� + 1

−
1

√1 − 0.52
𝑒𝑒−(0.5)(5)𝑡𝑡 sin �5�1 − 0.52𝑡𝑡 + 𝜙𝜙� ,𝜙𝜙 = cos−1 0.5 

 
𝑐𝑐(𝑡𝑡) = 1 + 0.693𝑒𝑒−2.5𝑡𝑡 sin 4.33𝑡𝑡 − 1.15𝑒𝑒−2.5𝑡𝑡 sin(4.33𝑡𝑡 + 1.047) 

   
3. (a) 

Position error constant: 𝐾𝐾𝑝𝑝 = lim
𝑠𝑠→0

𝐺𝐺(𝑠𝑠)𝐻𝐻(𝑠𝑠) = lim
𝑠𝑠→0

4(𝑠𝑠 + 1)
𝑠𝑠2(𝑠𝑠 + 2)

=
4
0

= ∞ 

  

Velocity error constant: 𝐾𝐾𝑣𝑣 = lim
𝑠𝑠→0

𝑠𝑠𝐺𝐺(𝑠𝑠)𝐻𝐻(𝑠𝑠) = lim
𝑠𝑠→0

𝑠𝑠
4(𝑠𝑠 + 1)
𝑠𝑠2(𝑠𝑠 + 2)

=
4
0

= ∞ 

  

Acceleration error constant: 𝐾𝐾𝑎𝑎 = lim
𝑠𝑠→0

𝑠𝑠2𝐺𝐺(𝑠𝑠)𝐻𝐻(𝑠𝑠) = lim
𝑠𝑠→0

𝑠𝑠2
4(𝑠𝑠 + 1)
𝑠𝑠2(𝑠𝑠 + 2)

=
4
2

= 2 
 

   
 (b) 

State-error (Position): 𝑒𝑒𝑝𝑝,𝑠𝑠𝑠𝑠(∞) =
1

1 + 𝐾𝐾𝑝𝑝
=

1
1 + ∞

= 0 

State-error (Velocity): 𝑒𝑒𝑣𝑣,𝑠𝑠𝑠𝑠(∞) =
1
𝐾𝐾𝑣𝑣

=
1
∞

= 0 
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State-error (Acceleration): 𝑒𝑒𝑎𝑎,𝑠𝑠𝑠𝑠(∞) =
1
𝐾𝐾𝑎𝑎

=
1
2

= 0.5 

The input signal, R(s), consists of 3 elements, step �3
𝑠𝑠
�+ ramp � 1

𝑠𝑠2
� + parabolic � 1

2𝑠𝑠3
�inputs, because 

the system is LTI, the principle of superposition holds, so the steady-state error will be equal to, 
 

𝑒𝑒𝑠𝑠𝑠𝑠(∞) = 3𝑒𝑒𝑝𝑝,𝑠𝑠𝑠𝑠(∞) − 𝑒𝑒𝑣𝑣,𝑠𝑠𝑠𝑠(∞) +
1
2
𝑒𝑒𝑎𝑎,𝑠𝑠𝑠𝑠(∞) = 3(0) − 0 +

1
2

(0.5) = 0.25 
   
   
4. (a) The Routh’s array, 

𝑠𝑠3 1 8 
𝑠𝑠2 4 12 
𝑠𝑠1 (4)(8) − (1)(12)

4
= 5 

 

𝑠𝑠0 (5)(12) − (4)(0)
5

= 12 
 

 
Since there is no sign change on the 1st column of the Routh’s array, the system is Stable. 

   
 (b) The Routh’s array, 

𝑠𝑠3 2 4 
𝑠𝑠2 4 12 
𝑠𝑠1 (4)(4) − (2)(12)

4
= −2 

 

𝑠𝑠0 (−2)(12) − (4)(0)
−2

= 12 
 

 
Since there are 2 sign changes on the 1st column of the Routh’s array, the system is Unstable. 

   
5. From the Routh’s array, 

𝑠𝑠4 1 11 K 
𝑠𝑠3 6 6  
𝑠𝑠2 (6)(11) − (1)(6)

6
= 10 

(6)(𝐾𝐾)− (1)(0)
6

= 𝐾𝐾 
 

𝑠𝑠1 (10)(6) − (6)(𝐾𝐾)
10

= 6 − 0.6𝐾𝐾 
  

𝑠𝑠0 (6 − 0.6𝐾𝐾)(𝐾𝐾) − (10)(0)
6 − 0.6𝐾𝐾

= 𝐾𝐾 
  

 
The system is stable if there is no sign change on the 1st column of the Routh’s array. Hence, we have 
6 − 0.6𝐾𝐾 > 0, 𝐾𝐾 < 10 and 𝐾𝐾 > 0 ⇒ 0 < 𝐾𝐾 < 10. 

   
6. (a) The open-loop transfer function is, 

𝐺𝐺(𝑠𝑠)𝐻𝐻(𝑠𝑠) =
𝐾𝐾

𝑠𝑠(𝑠𝑠 + 3)(𝑠𝑠 + 8)
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1. Locate the open-loop poles and zeros of 𝑮𝑮(𝒔𝒔)𝑯𝑯(𝒔𝒔) on the complex plane (or s-plane) 
Poles: 𝑠𝑠 = 0, 𝑠𝑠 = −3, 𝑠𝑠 = −8 
 

2. Determine the root loci on the real axis 
Root loci: (−∞,−8] and [−3, 0] 
 

3. Determine the asymptotes of root loci 

Angles of asymptotes =
±180°(2𝑘𝑘 + 1)

𝑛𝑛 −𝑚𝑚
=

±180°(2𝑘𝑘 + 1)
3 − 0

= +60°,−60°, ±180° 
 
The intersection of the asymptotes and the real axis is found from, 

𝑠𝑠 =
∑poles − ∑ zeros

𝑛𝑛 −𝑚𝑚
=

(0) + (−3) + (−8)
3 − 0

= −3.667 
 

4. Find the breakaway point and/or break-in points 
The characteristic equation for the system is,  

∆(𝑠𝑠) = 𝑠𝑠(𝑠𝑠 + 3)(𝑠𝑠 + 8) + 𝐾𝐾 = 𝑠𝑠3 + 11𝑠𝑠2 + 24𝑠𝑠 + 𝐾𝐾 = 0 
We have 

𝐾𝐾 = −𝑠𝑠3 − 11𝑠𝑠2 − 24𝑠𝑠 
 
The breakaway and/or break-in points are found from, 

𝑑𝑑𝐾𝐾
𝑑𝑑𝑠𝑠

= −3𝑠𝑠2 − 22𝑠𝑠 − 24 = 0 
from which we get, 

𝑠𝑠 = −1.333, −6 (rejected) 
Only s = −1.333 lies on the root loci.   
 

5. Determine the angle of departure (angle of arrival) of the root locus from a complex 
pole/zero 
There are no angle of departure (angle of arrival) since the system has no complex pole/zero. 
 

6. Find the points where the root loci may cross the imaginary axis 
The characteristic equation for the system is,  

∆(𝑠𝑠) = 𝑠𝑠(𝑠𝑠 + 3)(𝑠𝑠 + 8) + 𝐾𝐾 = 𝑠𝑠3 + 11𝑠𝑠2 + 24𝑠𝑠 + 𝐾𝐾 = 0 
Methods 1 
The Routh’s array, 

𝑠𝑠3 1 24 
𝑠𝑠2 11 K 
𝑠𝑠1 (11)(24)−(1)(𝐾𝐾)

11
= 24 − 1

11
𝐾𝐾   

𝑠𝑠0 �24 − 1
11𝐾𝐾� (𝐾𝐾) − (11)(0)

24 − 1
11𝐾𝐾

= 𝐾𝐾 
 

For stable system, 𝐾𝐾 > 0, 24 − 1
11
𝐾𝐾 > 0 ⇒ 24 > 1

11
𝐾𝐾 

∴ 0 < 𝐾𝐾 < 264 
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Refer to the 2nd row of the Routh’s array, we have  11𝑠𝑠2 + 264 = 0, yielding,  
𝑠𝑠 = ±𝑗𝑗4.899 

 
Methods 2 
Substitute 𝑠𝑠 = 𝑗𝑗𝜔𝜔 into the characteristic equation to find the points where root-locus branches 
may cross the imaginary axis, yielding,  
 

(𝑗𝑗𝜔𝜔)3 + 11(𝑗𝑗𝜔𝜔)2 + 24(𝑗𝑗𝜔𝜔) + 𝐾𝐾 = 0 
or 

(𝐾𝐾 − 11𝜔𝜔2) + 𝑗𝑗𝜔𝜔(24 − 𝜔𝜔2) = 0 
 
In order to satisfy the equation,  

𝐾𝐾 − 11𝜔𝜔2 = 0 and 𝑗𝑗𝜔𝜔(24 − 𝜔𝜔2) = 0 
∴ 𝑗𝑗𝜔𝜔 = ±√24 = ±𝑗𝑗4.899 
 

With 𝜔𝜔 = 4.899,𝐾𝐾 = 11𝜔𝜔2 ⇒ 𝐾𝐾 = 264 
 

7. Draw the root locus on the graph paper 
 

 
   
 (b) The open-loop transfer function is, 
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𝐺𝐺(𝑠𝑠)𝐻𝐻(𝑠𝑠) =
𝐾𝐾(𝑠𝑠 + 2)(𝑠𝑠 + 3)

𝑠𝑠(𝑠𝑠 + 1)
 

 
1. Locate the open-loop poles and zeros of 𝑮𝑮(𝒔𝒔)𝑯𝑯(𝒔𝒔) on the complex plane (or s-plane) 

Poles: 𝑠𝑠 = 0, 𝑠𝑠 = −1 
Zeros: 𝑠𝑠 = −2, 𝑠𝑠 = −3 
 

2. Determine the root loci on the real axis 
Root loci: [−3,−2] and [−1, 0] 
 

3. Determine the asymptotes of root loci 
Since the number of open-loop poles and zeros are the same.  There are NO asymptotes in the 
complex region of the s-plane. 
 

4. Find the breakaway point and/or break-in points 
The characteristic equation for the system is,  

∆(𝑠𝑠) = 𝑠𝑠(𝑠𝑠 + 1) + 𝐾𝐾(𝑠𝑠 + 2)(𝑠𝑠 + 3) = 1 +
𝐾𝐾(𝑠𝑠 + 2)(𝑠𝑠 + 3)

𝑠𝑠(𝑠𝑠 + 1)
= 0 

or 

𝐾𝐾 = −
𝑠𝑠(𝑠𝑠 + 1)

(𝑠𝑠 + 2)(𝑠𝑠 + 3)
 

 
The breakaway and/or break-in points are found from, 

𝑑𝑑𝐾𝐾
𝑑𝑑𝑠𝑠

= −
(𝑠𝑠 + 2)(𝑠𝑠 + 3) 𝑑𝑑𝑑𝑑𝑠𝑠 𝑠𝑠(𝑠𝑠 + 1) − 𝑠𝑠(𝑠𝑠 + 1) 𝑑𝑑𝑑𝑑𝑠𝑠 (𝑠𝑠 + 2)(𝑠𝑠 + 3)

[(𝑠𝑠 + 2)(𝑠𝑠 + 3)]2  

 
𝑑𝑑𝐾𝐾
𝑑𝑑𝑠𝑠

= −
(𝑠𝑠 + 2)(𝑠𝑠 + 3)(2𝑠𝑠 + 1) − 𝑠𝑠(𝑠𝑠 + 1)(2𝑠𝑠 + 5)

[(𝑠𝑠 + 2)(𝑠𝑠 + 3)]2 = −
4𝑠𝑠2 + 12𝑠𝑠 + 6

[(𝑠𝑠 + 2)(𝑠𝑠 + 3)]2 = 0 

 
Hence, we have  4𝑠𝑠2 + 12𝑠𝑠 + 6 = 0, which yielding,  

 
𝑠𝑠 = −0.634, 𝑠𝑠 = −2.366 

 
Both points are on the root loci.  Because point lies s = −0.634 between two poles, it is a 
breakaway point, and because point 
s = −2.366 lies between two zeros, it is a break-in point. 
 

5. Determine the angle of departure (angle of arrival) of the root locus from a complex 
pole/zero 
There are no angle of departure (angle of arrival) since the system has no complex pole/zero. 
 

6. Draw the root locus on the graph paper 
Determine a sufficient number of points that satisfy the angle condition. (It can be found that the 
root loci involve a circle with center at –1.5 that passes through the breakaway and break-in 
points.) 
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7. The open-loop transfer function is, 

𝐺𝐺(𝑠𝑠)𝐻𝐻(𝑠𝑠) =
𝐾𝐾

𝑠𝑠(𝑠𝑠 + 4)
 

 
1. Locate the open-loop poles and zeros of 𝑮𝑮(𝒔𝒔)𝑯𝑯(𝒔𝒔) on the complex plane (or s-plane) 

Poles: 𝑠𝑠 = 0, 𝑠𝑠 = −4  
 

2. Determine the root loci on the real axis 
Root loci: [−4, 0] 
 

3. Determine the asymptotes of root loci 

Angles of asymptotes =
±180°(2𝑘𝑘 + 1)

𝑛𝑛 −𝑚𝑚
=

±180°(2𝑘𝑘 + 1)
2 − 0

= +90°,−90° 
 
The intersection of the asymptotes and the real axis is found from, 

𝑠𝑠 =
∑poles − ∑ zeros

𝑛𝑛 −𝑚𝑚
=

(0) + (−4)
2 − 0

= −2 
 

4. Find the breakaway point and/or break-in points 
The characteristic equation for the system is,  

∆(𝑠𝑠) = 𝑠𝑠(𝑠𝑠 + 4) + 𝐾𝐾 = 𝑠𝑠2 + 4𝑠𝑠 + 𝐾𝐾 = 0 
We have 
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𝐾𝐾 = −𝑠𝑠2 − 4𝑠𝑠 
 
The breakaway and/or break-in points are found from, 

𝑑𝑑𝐾𝐾
𝑑𝑑𝑠𝑠

= −2𝑠𝑠 − 4 = 0 
from which we get, 

𝑠𝑠 = −2 
 
The point s = −2 lies on the root loci.   
 

5. Determine the angle of departure (angle of arrival) of the root locus from a complex pole/zero 
There is no angle of departure (angle of arrival) since the system has no complex pole/zero. 
 

6. Find the points where the root loci may cross the imaginary axis 
The characteristic equation for the system is,  

∆(𝑠𝑠) = 𝑠𝑠2 + 4𝑠𝑠 + 𝐾𝐾 
Substitute 𝑠𝑠 = 𝑗𝑗𝜔𝜔 into the characteristic equation to find the points where root-locus branches may 
cross the imaginary axis, yielding,  
 

(𝑗𝑗𝜔𝜔)2 + 4(𝑗𝑗𝜔𝜔) + 𝐾𝐾 = 0 
or 

(𝐾𝐾 − 𝜔𝜔2) + 4𝑗𝑗𝜔𝜔 = 0 
 
Notice that this equation can be satisfied only if 𝜔𝜔 = 0, 𝐾𝐾 = 0.  The root-locus branches do not 
cross the 𝑗𝑗𝜔𝜔 axis. 
 

7. Draw the root locus on the graph paper 
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 (a) The addition of a pole has the effect of pulling the root locus to the right, tending to lower the 
system’s relative stability.  The root locus plot is shown below. 
 

 
   
 (b) The addition of zeros has the effect of pulling the root locus to the left, tending to make the system 

more stable.  The root locus plot is shown below. 
 

 
 

 
 

End of Tutorial Questions (Part 2) Solution 
 
 


