The Hong Kong Polytechnic University School of Professional Education and Executive Development

Mid-term Test (Version D) Solution

		· · · · · · · · · · · · · · · · · · ·			
Student Name	:				
Student Number	:				
Tutorial Group	: A01 (Dr Norber	t CHEUNG, Thu, 19:00-22	2:00)		
	☐ A02 (Dr Kennet	h LO, Sat, 19:00-22:00)			
	☐ A03 (Dr Norber	t CHEUNG, Thu, 12:00-1	5:00)		
Subject Title	: Control System Analys	is Subject Code	: SEHS4653		
Session	: Semester One 2024/25	Date	: 60 mins		
This question paper has a total of EIGHT pages (including this covering page).					
Instructions to C	Candidates:				
	HREE questions in this p	paper. Answer ALL ques	stions on the blank space		
provided in this paper.Show all your workings clearly. Reasonable steps must be provided.Total marks of this paper is 40 marks.					
 All answers must be written in ink. Pencils may only be used for drawing, sketching, or graphical work. 					
5. Laplace Tran					
Authorised Mate	erials:	VEC	NO		
CALCULATOR		$\operatorname{YES} \left[\ \sqrt{\ } \right]$	NO []		
SPECIFICALLY PERMITTED ITEMS $ [] $					

DO NOT TURN OVER THE PAGE UNTIL YOU ARE TOLD TO DO SO

Answer ALL questions in the blank space provided.

Question 1 (10 marks)

Determine the range of K such that the system with the characteristic equation, $\Delta(s) = s^4 +$ $4s^3 + 2s^2 + 3s + K = 0$, is stable.

Solution

$$\frac{\frac{15}{4} - 4K}{\frac{5}{4}} > 0, K < \frac{15}{16}$$

$$\therefore 0 < K < \frac{15}{16} \text{ (or 0.9375)}$$

$$0 < K < \frac{15}{16}$$
 (or 0.9375)

Question 2 (10 marks)

Find the time function of the equation below by Laplace Transform.

$$G(s) = \frac{1}{s^2 + 7s + 10}$$

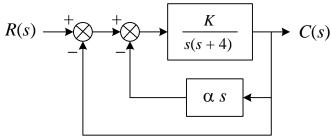
$$G(s) = \frac{1}{(s+2)(s+5)}$$

Taking inverse Laplace Transform, we have

$$g(t) = \frac{1}{5-2}(e^{-2t} - e^{-5t}) = \frac{1}{3}(e^{-2t} - e^{-5t})$$

Ouestion 3 (20 marks)

Determine the values of K and α if the damping ratio is 0.766 and steady-state error for unitramp input is 0.25.



Solution

The open-loop transfer function will be,

$$G(s)H(s) = \frac{\frac{K}{s(s+4)}}{1 + \left(\frac{K}{s(s+4)}\right)(\alpha s)} = \frac{K}{s(s+4) + K\alpha s}$$

The static velocity error constant is,

$$K_{v} = \lim_{s \to 0} (s) \left(\frac{K}{s(s+4) + K\alpha s} \right) = \frac{K}{4 + K\alpha}$$

The steady-state error will then be,

$$e_{ss} = \frac{1}{K_v} = 0.25 = \frac{4 + K\alpha}{K} \dots (1)$$

The closed-loop transfer function,

$$\frac{C(s)}{R(s)} = \frac{\frac{K}{s(s+4) + K\alpha s}}{1 + \frac{K}{s(s+4) + K\alpha s}} = \frac{K}{s(s+4) + K\alpha s + K}$$

Equating with standard
$$2^{\rm nd}$$
 order equation, we have
$$\Delta(s) = s^2 + 2\zeta\omega_n s + \omega_n^2 = s^2 + (4 + K\alpha)s + K$$

$$4 + K\alpha = 2\zeta\omega_n \dots (2)$$

$$K = \omega_n^2 \dots (3)$$

From (1) and (3), we have $K\alpha = 0.25K - 4 \dots (4)$ and $\omega_n = \sqrt{K} \dots (5)$

Substitute (4) into (2), we have $4 + (0.25K - 4) = 2\zeta\sqrt{K}$

$$K = \left(\frac{(2)(0.766)}{0.25}\right)^2 = 37.552$$

$$\alpha = \frac{(0.25)(37.552) - 4}{37.552} = 0.143$$

Appendix I: Laplace Transform Table

	Time Function $f(t)$	Laplace Transform $F(s)$
1	Unit-impulse function $\delta(t)$	1
2	Unit-step function $u_s(t)$	$\frac{1}{s}$
3	Unit-ramp function t	$\frac{1}{s^2}$
4	t^n ($n = positive integer$)	$\frac{n!}{s^{n+1}}$
5	e^{-at}	$\frac{1}{s+a}$
6	te ^{-at}	$\frac{1}{(s+a)^2}$
7	$t^n e^{-at}$ (n = positive integer)	$\frac{n!}{(s+a)^{n+1}}$
8	$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$
9	$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
10	$\frac{1}{a}(1-e^{-at})$	$\frac{1}{s(s+a)}$
11	$\frac{1}{b-a}(e^{-at}-e^{-bt})\ (a\neq b)$	$\frac{1}{(s+a)(s+b)}$
12	$\frac{1}{b-a}(be^{-bt}-ae^{-at}) \ (a\neq b)$	$\frac{s}{(s+a)(s+b)}$
13	$\frac{1}{a^2}(1-e^{-at}-ate^{-at})$	$\frac{1}{s(s+a)^2}$
14	$\frac{1}{a^2}(at-1+e^{-at})$	$\frac{1}{s^2(s+a)}$
15	$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2 + \omega^2}$
16	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$
17	$\frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin\omega_n\sqrt{1-\zeta^2}t$	$\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$

18	$-\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin(\omega_n\sqrt{1-\zeta^2}t-\phi)$ where $\phi=\cos^{-1}\zeta$	$\frac{s}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
19	$1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_n \sqrt{1 - \zeta^2} t + \phi)$ where $\phi = \cos^{-1} \zeta$	$\frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$
20	$1-\cos \omega t$	$\frac{\omega^2}{s(s^2+\omega^2)}$
21	$\frac{d}{dt}f(t)$	sF(s)-f(0)
22	$\frac{d^2}{dt^2}f(t)$	$s^2F(s) - sf(0) - f'(0)$
23	$\frac{d^n}{dt^n}f(t)$	$s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f'(0) \dots - sf^{(n-2)}(0) - f^{(n-1)}(0)$
24	$\int f(t)dt$	$\frac{F(s)}{s} + \frac{1}{s} \left[\int f(t) dt \right]$
25	f(t-T)	$e^{-Ts}F(s)$
26	$f(\infty) = \lim_{t \to \infty} f(t)$	$=\lim_{s\to 0} sF(s)$
27	$f(0^+) = \lim_{t \to 0^+} f(t)$	$=\lim_{s\to\infty}sF(s)$

Appendix II: Useful Formulae

Rise Time:
$$t_r = \frac{\pi - \beta}{\omega_d}$$

Peak Time:
$$t_p = \frac{\pi}{\omega_d}$$

Maximum Overshoot:
$$M_{p} = e^{-\frac{\zeta \pi}{\sqrt{1-\zeta^{2}}}}$$

Settling Time (2%):
$$t_s = \frac{4}{\zeta \omega_n}$$

Settling Time (5%):
$$t_s = \frac{3}{\zeta \omega_n}$$

Damped Natural Frequency:
$$\omega_d = \omega_n \sqrt{1 - \zeta^2}$$

Series-lead Compensator:

Transfer Function:
$$G_c(s) = K_c \alpha \frac{Ts+1}{\alpha Ts+1} = K_c \frac{s+\frac{1}{T}}{s+\frac{1}{\alpha T}}$$

Maximum Phase Lead:
$$\sin \phi_m = \frac{1 - \alpha}{1 + \alpha}$$

New Gain Crossover Frequency and its Corresponding Gain:
$$\omega_m = \frac{1}{\sqrt{\alpha}T}$$
 and $|G_1(j\omega)| = -20\log\frac{1}{\sqrt{\alpha}}$

Series-lag Compensator:

Transfer Function:
$$G_c(s)=K_c\beta\frac{Ts+1}{\beta Ts+1}=K_c\frac{s+\frac{1}{T}}{s+\frac{1}{\beta T}}$$

At New Gain Crossover Frequency:
$$|G_c(j\omega)| = 20 \log \beta$$