The Hong Kong Polytechnic University School of Professional Education and Executive Development

Mid-term Test (Version A) Solution

				, ,			
Stu	dent Name	:					
Stu	dent Number	:					
Tutorial Group		:	☐ A01 (Dr Norbert CHEUNG, Thu, 19:00-22:00)				
			☐ A02 (Dr Kenneth	LO, Sat, 19:00-22:00))		
			☐ A03 (Dr Norbert (CHEUNG, Thu, 12:00)-15:00)		
Sul	oject Title	: Co	ntrol System Analysis	Subject Cod	de : SEHS4653		
Session		: Ser	mester One 2024/25	Date	: 60 mins		
Thi	s question pap	per has	a total of <u>EIGHT</u> pag	es (including this cove	ering page).		
Ins	tructions to (Candid	ates:				
1.	. There are THREE questions in this paper. Answer <u>ALL</u> questions on the blank space provided in this paper.						
 3. 	Show all your workings clearly. Reasonable steps must be provided.						
4.	. All answers must be written in ink. Pencils may only be used for drawing, sketching, or graphical work.						
5.	Laplace Transform table and useful formulae are provided on pages 6 - 8.						
Au	thorised Mat	erials:		VEC	NO		
CALCULATOR SPECIFICALLY PERMITTED ITEMS			IITTED ITEMS	YES [√] []	NO [] [√]		

DO NOT TURN OVER THE PAGE UNTIL YOU ARE TOLD TO DO SO

Answer ALL questions in the blank space provided.

Question 1 (10 marks)

Find the time function of the equation below by Laplace Transform.

$$G(s) = \frac{1}{s^2 + 5s + 6}$$

Solution

$$G(s) = \frac{1}{(s+2)(s+3)}$$

Taking inverse Laplace Transform, we have

$$g(t) = \frac{1}{3-2}(e^{-2t} - e^{-3t}) = e^{-2t} - e^{-3t}$$

Question 2 (10 marks)

Determine the range of K such that the system with the characteristic equation, $\Delta(s) = s^4 + 4s^3 + 3s^2 + 4s + K = 0$, is stable.

Solution

$$\begin{vmatrix}
s^4 \\
s^3 \\
s^2 \\
s^1 \\
s^0
\end{vmatrix} = \begin{vmatrix}
1 \\
4 \\
(4)(3) - (1)(4) \\
4 \\
(2)(4) - (4)(K) \\
2
\end{vmatrix} = 2$$

$$\frac{(4)(K) - (1)(0)}{4} = K$$

$$K > 0$$

$$\therefore 0 < K < 2$$

Ouestion 3 (20 marks)

Determine the values of K and α if the damping ratio is 0.866 and steady-state error for unitramp input is 0.2.

Solution

The open-loop transfer function will be,

$$G(s)H(s) = \frac{\frac{K}{s(s+2)}}{1 + \left(\frac{K}{s(s+2)}\right)(\alpha s)} = \frac{K}{s(s+2) + K\alpha s}$$

The static velocity error constant is,

$$K_{v} = \lim_{s \to 0} (s) \left(\frac{K}{s(s+2) + K\alpha s} \right) = \frac{K}{2 + K\alpha}$$

The steady-state error will then be,

$$e_{ss} = \frac{1}{K_n} = 0.2 = \frac{2 + K\alpha}{K} \dots (1)$$

The closed-loop transfer function,

$$\frac{C(s)}{R(s)} = \frac{\frac{K}{s(s+2) + K\alpha s}}{1 + \frac{K}{s(s+2) + K\alpha s}} = \frac{K}{s(s+2) + K\alpha s + K}$$

Equating with standard
$$2^{\rm nd}$$
 order equation, we have
$$\Delta(s) = s^2 + 2\zeta\omega_n s + \omega_n^2 = s^2 + (2 + K\alpha)s + K$$

$$2 + K\alpha = 2\zeta\omega_n \dots (2)$$

$$K = \omega_n^2 \dots (3)$$

From (1) and (3), we have $K\alpha = 0.2K - 2...(4)$ and $\omega_n = \sqrt{K}...(5)$

Substitute (4) into (2), we have $2 + (0.2K - 2) = 2\zeta\sqrt{K}$

$$K = \left(\frac{(2)(0.866)}{0.2}\right)^2 = 74.996$$

$$\alpha = \frac{(0.2)(74.996) - 2}{74.996} = 0.173$$

Appendix I: Laplace Transform Table

	Time Function $f(t)$	Laplace Transform $F(s)$
1	Unit-impulse function $\delta(t)$	1
2	Unit-step function $u_s(t)$	$\frac{1}{s}$
3	Unit-ramp function t	$\frac{1}{s^2}$
4	t^n ($n = positive integer$)	$\frac{n!}{s^{n+1}}$
5	e^{-at}	$\frac{1}{s+a}$
6	te ^{-at}	$\frac{1}{(s+a)^2}$
7	$t^n e^{-at}$ (n = positive integer)	$\frac{n!}{(s+a)^{n+1}}$
8	$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$
9	$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
10	$\frac{1}{a}(1-e^{-at})$	$\frac{1}{s(s+a)}$
11	$\frac{1}{b-a}(e^{-at}-e^{-bt})\ (a\neq b)$	$\frac{1}{(s+a)(s+b)}$
12	$\frac{1}{b-a}(be^{-bt}-ae^{-at}) \ (a\neq b)$	$\frac{s}{(s+a)(s+b)}$
13	$\frac{1}{a^2}(1-e^{-at}-ate^{-at})$	$\frac{1}{s(s+a)^2}$
14	$\frac{1}{a^2}(at-1+e^{-at})$	$\frac{1}{s^2(s+a)}$
15	$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2 + \omega^2}$
16	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$
17	$\frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin\omega_n\sqrt{1-\zeta^2}t$	$\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$

18	$-\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin(\omega_n\sqrt{1-\zeta^2}t-\phi)$ where $\phi=\cos^{-1}\zeta$	$\frac{s}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
19	$1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_n \sqrt{1 - \zeta^2} t + \phi)$ where $\phi = \cos^{-1} \zeta$	$\frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$
20	$1-\cos \omega t$	$\frac{\omega^2}{s(s^2+\omega^2)}$
21	$\frac{d}{dt}f(t)$	sF(s)-f(0)
22	$\frac{d^2}{dt^2}f(t)$	$s^2F(s) - sf(0) - f'(0)$
23	$\frac{d^n}{dt^n}f(t)$	$s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f'(0) \dots - sf^{(n-2)}(0) - f^{(n-1)}(0)$
24	$\int f(t)dt$	$\frac{F(s)}{s} + \frac{1}{s} \left[\int f(t) dt \right]$
25	f(t-T)	$e^{-Ts}F(s)$
26	$f(\infty) = \lim_{t \to \infty} f(t)$	$=\lim_{s\to 0} sF(s)$
27	$f(0^+) = \lim_{t \to 0^+} f(t)$	$=\lim_{s\to\infty}sF(s)$

Appendix II: Useful Formulae

Rise Time:
$$t_r = \frac{\pi - \beta}{\omega_d}$$

Peak Time:
$$t_p = \frac{\pi}{\omega_d}$$

Maximum Overshoot:
$$M_{p} = e^{-\frac{\zeta \pi}{\sqrt{1-\zeta^{2}}}}$$

Settling Time (2%):
$$t_s = \frac{4}{\zeta \omega_n}$$

Settling Time (5%):
$$t_s = \frac{3}{\zeta \omega_n}$$

Damped Natural Frequency:
$$\omega_d = \omega_n \sqrt{1 - \zeta^2}$$

Series-lead Compensator:

Transfer Function:
$$G_c(s) = K_c \alpha \frac{Ts+1}{\alpha Ts+1} = K_c \frac{s+\frac{1}{T}}{s+\frac{1}{\alpha T}}$$

Maximum Phase Lead:
$$\sin \phi_m = \frac{1 - \alpha}{1 + \alpha}$$

New Gain Crossover Frequency and its Corresponding Gain:
$$\omega_m = \frac{1}{\sqrt{\alpha}T}$$
 and $|G_1(j\omega)| = -20\log\frac{1}{\sqrt{\alpha}}$

Series-lag Compensator:

Transfer Function:
$$G_c(s) = K_c \beta \frac{Ts+1}{\beta Ts+1} = K_c \frac{s+\frac{1}{T}}{s+\frac{1}{\beta T}}$$

At New Gain Crossover Frequency:
$$|G_c(j\omega)| = 20 \log \beta$$