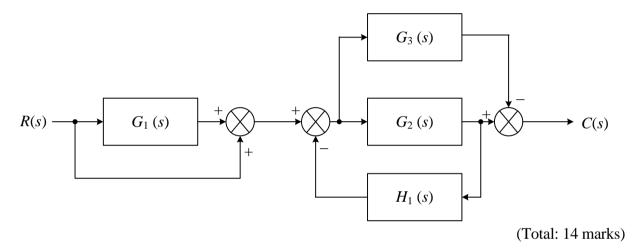
SCHOOL OF PROFESSIONAL EDUCATION AND EXECUTIVE DEVELOPMENT

Programme Title : Bachelor of Engineering (Honours) in Electrical Engineering (84065 &							gineering (84065 & 84066)
Subject Title	:	Control System Ar	nalysis	Sul	bject Code	:	SEHS4653
Semester	:	Semester 2, 2023/2	24				
Date	:	16 May 2024		Tir	ne	:	19:30 – 21:30
Time Allowed	:	2 hours			bject aminer(s)	:	Dr Kenneth LO
This question paper has <u>6</u> pages (including this covering page).							
Instructions to Can	dic	lates:					
 This paper consists of 5 questions. Answer ALL questions in the answer book provided. Begin each question on a fresh page in the answer book provided. Show all your workings clearly and neatly. Reasonable steps should be shown. Candidates are NOT allowed to retain this paper. Metric-size graph paper and semi-log graph papers are available from invigilator. Laplace Transform table and useful formulae are provided on pages 4 to 6. 							
Authorised Materials:							
CALCULATOR			,-	NO []	Remark NO programme should be stored i		ne should be stored in
SPECIFICALLY PE	ERN	MITTED ITEMS	[]	[🗸]	the calcula	tor.	

DO NOT TURN OVER THE PAGE UNTIL YOU ARE TOLD TO DO SO

Answer ALL questions in the answer book provided.


Question 1

Determine the impulse response of the system, $\ddot{y}(t) - \dot{y}(t) - 6y(t) = 4\delta(t)$, with zero initial condition by using Laplace Transform.

(Total: 4 marks)

Question 2

Reduce the following block diagram.

Question 3

A unity feedback control system with proportional-derivative (PD) controller is shown in Figure 1 below.

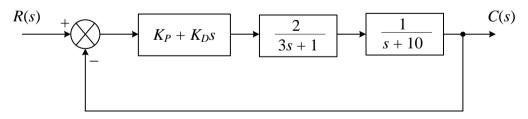


Figure 1

- (a) Determine the values of K_P and K_D such that the unit-step response of the control system has a maximum overshoot (percentage) of 3% and an undamped natural frequency of 8 rad/s.
 - (15 marks)
- (b) Hence, find the steady-state error under the condition in part (a). (5 marks) (Total: 20 marks)

Question 4

A unity negative feedback control system (with K > 0) has the following open-loop transfer function,

$$G(s) = \frac{K}{(s+3)(s^2+4s+8)}.$$

- (a) Use Routh–Hurwitz stability criterion to find the range of *K* such that the system is stable. (8 marks)
- (b) Draw the root-locus of the system on the metric-size graph paper provided. Show all your steps clearly. (12 marks)
- (c) Identify the location of closed-loop pole such that a desired damping ratio of 0.36 is required. (6 marks)
- (d) Determine the peak and rise time of the system under unit-step input based on the result obtained in part (c). (6 marks)
 (Total: 32 marks)

Question 5

A series phase-lead compensator, $G_c(s)$, is used to control the position of a servo motor as shown in Figure 2 below.

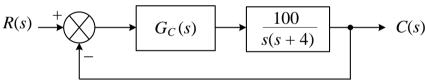


Figure 2

- (a) Find the value of the gain, $K_C \alpha$, of the compensator such that the system has statics velocity error constant of 10 sec^{-1} . (5 marks)
- (b) With the result obtained in part (a), plot the exact Bode diagrams at angular frequencies of 1 rad/s, 2 rad/s, 5 rad/s, 8 rad/s, and 10 rad/s for $G_1(s) = K_c \alpha \frac{100}{s(s+4)}$. (15 marks)
- (c) Hence, find the transfer function of the phase-lead compensator such that the phase margin is at least 60°. (10 marks) (Total: 30 marks)

Appendix I: Laplace Transform Table

	Time Function $f(t)$	Laplace Transform $F(s)$
1	Unit-impulse function $\delta(t)$	1
2	Unit-step function $u_s(t)$	$\frac{1}{s}$
3	Unit-ramp function t	$\frac{1}{s^2}$
4	t^n ($n = positive integer$)	$\frac{n!}{s^{n+1}}$
5	e^{-at}	$\frac{1}{s+a}$
6	te ^{-at}	$\frac{1}{(s+a)^2}$
7	$t^n e^{-at}$ (n = positive integer)	$\frac{n!}{(s+a)^{n+1}}$
8	$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$
9	$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
10	$\frac{1}{a}(1-e^{-at})$	$\frac{1}{s(s+a)}$
11	$\frac{1}{b-a}(e^{-at}-e^{-bt})\ (a\neq b)$	$\frac{1}{(s+a)(s+b)}$
12	$\frac{1}{b-a}(be^{-bt}-ae^{-at})\ (a\neq b)$	$\frac{s}{(s+a)(s+b)}$
13	$\frac{1}{a^2}(1-e^{-at}-ate^{-at})$	$\frac{1}{s(s+a)^2}$
14	$\frac{1}{a^2}(at-1+e^{-at})$	$\frac{1}{s^2(s+a)}$
15	$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2 + \omega^2}$
16	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$
17	$\frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin\omega_n\sqrt{1-\zeta^2}t$	$\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$

18	$-\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin(\omega_n\sqrt{1-\zeta^2}t-\phi)$ where $\phi=\cos^{-1}\zeta$	$\frac{s}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
19	$1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_n \sqrt{1 - \zeta^2} t + \phi)$ where $\phi = \cos^{-1} \zeta$	$\frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$
20	$1-\cos\omega t$	$\frac{\omega^2}{s(s^2+\omega^2)}$
21	$\frac{d}{dt}f(t)$	sF(s) - f(0)
22	$\frac{d^2}{dt^2}f(t)$	$s^2F(s) - sf(0) - f'(0)$
23	$\frac{d^n}{dt^n}f(t)$	$s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f'(0) \dots - sf^{(n-2)}(0) - f^{(n-1)}(0)$
24	$\int f(t)dt$	$\frac{F(s)}{s} + \frac{1}{s} \left[\int f(t) dt \right]$
25	f(t-T)	$e^{-Ts}F(s)$
26	$f(\infty) = \lim_{t \to \infty} f(t)$	$=\lim_{s\to 0} sF(s)$
27	$f(0^+) = \lim_{t \to 0^+} f(t)$	$=\lim_{s\to\infty} sF(s)$

Appendix II: Useful Formulae

Rise Time:
$$t_r = \frac{\pi - \beta}{\omega_d}$$

Peak Time:
$$t_p = \frac{\pi}{\omega_d}$$

Maximum Overshoot:
$$M_p = e^{-\frac{\zeta \pi}{\sqrt{1-\zeta^2}}}$$

Settling Time (2%):
$$t_s = \frac{4}{\zeta \omega_n}$$

Settling Time (5%):
$$t_s = \frac{3}{\zeta \omega_n}$$

Damped Natural Frequency:
$$\omega_d = \omega_n \sqrt{1 - \zeta^2}$$

Series-lead Compensator:

Transfer Function:
$$G_c(s) = K_c \alpha \frac{Ts+1}{\alpha Ts+1} = K_c \frac{s+\frac{1}{T}}{s+\frac{1}{\alpha T}}$$

Maximum Phase Lead:
$$\sin \phi_m = \frac{1-\alpha}{1+\alpha}$$

New Gain Crossover Frequency and its Corresponding Gain:
$$\omega_m = \frac{1}{\sqrt{\alpha}T}$$
 and $|G_1(j\omega)| = -20\log\frac{1}{\sqrt{\alpha}}$

Series-lag Compensator:

Transfer Function:
$$G_c(s) = K_c \beta \frac{Ts+1}{\beta Ts+1} = K_c \frac{s+\frac{1}{T}}{s+\frac{1}{\beta T}}$$

At New Gain Crossover Frequency:
$$|G_c(j\omega)| = 20 \log \beta$$

- END OF PAPER -

The following academ	nic staff have been invo	olved in the pr	reparation of this examination paper:				
Subject Lecturer(s) Name :	Dr Kenneth LO	Signature	:				
Name :		Signature	:				
Name :		Signature	:				
Subject Leader (if Name :	applicable) Dr Kenneth LO	Signature	:				
Please ensure that the marking scheme is sent together with the examination paper.							
arrangement(s) or ad ☑ NOT allow students □ Multiple-choice An ☑ Graph Paper (no. of □ Single Line Paper (so.) □ Additional Answer □ Tailor-made answer	s to retain the question p aswer Sheet (no. of sheet f pieces per student: no. of pieces per student Book(s) (no. of addition r sheets. Answer books	papers ts per student: t:) ts) tal answer bool NOT required.	k required per student:)				
Note: The examination paper will be sent to PolyU and CPCE Libraries for display after the examination. Multiple-choice/ True or False questions, if any, will not be provided to the libraries.							
For Office Use Only	7						
Examination Paper received on	is	by					

