

FIG. 20.46 Problem 2.

FIG. 20.47 Problem 3.

FIG. 20.48 Problem 4.

PROBLEMS

SECTIONS 20.2 THROUGH 20.7 Series Resonance

- 1. Find the resonant ω_s and f_s for the series circuit with the following parameters:
 - **a.** $R = 10 \Omega, L = 1 H, C = 16 \mu F$
 - **b.** $R = 300 \Omega$, L = 0.5 H, $C = 0.16 \mu F$
 - **c.** $R = 20 \Omega$, L = 0.28 mH, $C = 7.46 \mu\text{F}$
- 2. For the series circuit of Fig. 20.46:
 - **a.** Find the value of X_C for resonance.
 - Determine the total impedance of the circuit at resonance.
 - c. Find the magnitude of the current I.
 - **d.** Calculate the voltages V_R , V_L , and V_C at resonance. How are V_L and V_C related? How does V_R compare to the applied voltage E?
 - e. What is the quality factor of the circuit? Is it a highor low-Q circuit?
 - f. What is the power dissipated by the circuit at resonance?
- 3. For the series circuit of Fig. 20.47:
 - **a.** Find the value of X_L for resonance.
 - **b.** Determine the magnitude of the current *I* at resonance.
 - c. Find the voltages V_R, V_L, and V_C at resonance, and compare their magnitudes.
 - d. Determine the quality factor of the circuit. Is it a highor low-Q circuit?
 - e. If the resonant frequency is 5 kHz, determine the value of L and C.
 - f. Find the bandwidth of the response if the resonant frequency is 5 kHz.
 - g. What are the low and high cutoff frequencies?
- 4. For the circuit of Fig. 20.48:
 - **a.** Find the value of *L* in millihenries if the resonant frequency is 1800 Hz.
 - **b.** Calculate X_L and X_C . How do they compare?
 - c. Find the magnitude of the current I_{rms} at resonance.
 - d. Find the power dissipated by the circuit at resonance.
 - e. What is the apparent power delivered to the system at resonance?
 - f. What is the power factor of the circuit at resonance?
 - **g.** Calculate the Q of the circuit and the resulting bandwidth.
 - h. Find the cutoff frequencies, and calculate the power dissipated by the circuit at these frequencies.