1. a. $\omega_{s}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{1 \mathrm{H})(16 \mu \mathrm{~F})}}=250 \mathrm{rad} / \mathrm{s}$

$$
f_{s}=\frac{\omega_{s}}{2 \pi}=\frac{250 \mathrm{rad} / \mathrm{s}}{2 \pi}=39.79 \mathrm{~Hz}
$$

b. $\quad \omega_{s}=\frac{1}{\sqrt{(0.5 \mathrm{H})(0.16 \mu \mathrm{~F})}}=3535.53 \mathrm{rad} / \mathrm{s}$

$$
f_{s}=\frac{\omega_{s}}{2 \pi}=\frac{3535.53 \mathrm{rad} / \mathrm{s}}{2 \pi}=562.7 \mathrm{~Hz}
$$

c. $\omega_{s}=\frac{1}{\sqrt{(0.28 \mathrm{mH})(7.46 \mu \mathrm{~F})}}=21,880 \mathrm{rad} / \mathrm{s}$

$$
f_{s}=\frac{\omega_{s}}{2 \pi}=\frac{21,880 \mathrm{rad} / \mathrm{s}}{2 \pi}=3482.31 \mathrm{~Hz}
$$

2.

a. $\quad X_{C}=30$ 』
b. $\quad Z_{T_{s}}=10$ Q
d. $\quad V_{R}=I R=(5 \mathrm{~mA})(10 \Omega)=50 \mathrm{mV}=\mathrm{E}$
$V_{L}=I X_{L}=(5 \mathrm{~mA})(30 \Omega)=150 \mathrm{mV}$
$V_{C}=I X_{C}=(5 \mathrm{~mA})(30 \Omega)=150 \mathrm{mV}$
$V_{L}=V_{C}$
c. $\quad I=\frac{E}{Z_{T_{s}}}=\frac{50 \mathrm{mV}}{10 \Omega}=5 \mathrm{~mA}$
e. $Q_{s}=\frac{X_{L}}{R}=\frac{30 \Omega}{10 \Omega}=3$ (low Q)
f. $\quad P=P^{2} R=(5 \mathrm{~mA})^{2} 100=0.25 \mathrm{~mW}$
3. a. $X_{L}=40 \Omega$
b. $\quad I=\frac{E}{Z_{T_{s}}}=\frac{20 \mathrm{mV}}{2 \Omega}=10 \mathrm{~mA}$
c. $\quad V_{R}=I R=(10 \mathrm{~mA})(2 \Omega)=20 \mathrm{mV}=\mathrm{E}$

$$
V_{L}=I X_{L}=(10 \mathrm{~mA})(40 \Omega)=400 \mathrm{mV}
$$

$$
V_{C}=I X_{C}=(10 \mathrm{~mA})(40 \Omega)=400 \mathrm{mV}
$$

$$
v_{L}=V_{C}=20 V_{R}
$$

d. $Q_{s}=\frac{X_{L}}{R}=\frac{40 \Omega}{2 \Omega}=20($ high $Q)$
e. $\quad X_{L}=2 \pi f L, L=\frac{X_{L}}{2 \pi f}=\frac{40 \Omega}{2 \pi(5 \mathrm{kHz})}=1.27 \mathrm{mH}$

$$
X_{C}=\frac{1}{2 \pi f C}, C=\frac{1}{2 \pi f X_{C}}=\frac{1}{2 \pi(5 \mathrm{kHz})(40 \Omega)}=0.796 \mu \mathrm{~F}
$$

f. $B W=\frac{f_{s}}{Q_{s}}=\frac{5 \mathrm{kHz}}{20}=250 \mathrm{~Hz}$
g. $f_{2}=f_{s}+\frac{B W}{2}=5 \mathrm{kHz}+\frac{0.25 \mathrm{kHz}}{2}=5.125 \mathrm{kHz}$

$$
f_{1}=f_{s}-\frac{B W}{2}=5 \mathrm{kHz}-\frac{0.25 \mathrm{kHz}}{2}=4.875 \mathrm{kHz}
$$

4. a. $f_{s}=\frac{1}{2 \pi \sqrt{L C}} \Rightarrow L=\frac{1}{\left(2 \pi_{s}\right)^{2} C}=\frac{1}{(2 \pi 1.8 \mathrm{kHz})^{2} 2 \mu \mathrm{~F}}=3.91 \mathrm{mH}$
b. $\quad X_{L}=2 \pi \mathrm{fL}=2 \pi(1.8 \mathrm{kHz})(3.91 \mathrm{mH})=44.2 \mathrm{\Omega}$

$$
\begin{aligned}
& x_{C}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi(1.8 \mathrm{kHz})(2 \mu \mathrm{~F})}=44.2 \Omega \\
& x_{L}=x_{C}
\end{aligned}
$$

c. $\quad E_{\text {rms }}=(0.707)(20 \mathrm{mV})=14.14 \mathrm{mV}$

$$
I_{\mathrm{rms}}=\frac{E_{\mathrm{mss}}}{R}=\frac{14.14 \mathrm{mV}}{4.7 \Omega}=3.01 \mathrm{~mA}
$$

d. $\quad P=I^{2} R=(3.01 \mathrm{~mA})^{2} 4.7 \Omega=42.58 \mu \mathrm{~W}$
e. $\quad S_{T}=P_{T}=42.58 \mu \mathrm{VA}$
f. $\quad F_{p}=1$
g. $\quad Q_{s}=\frac{X_{L}}{R}=\frac{44.2 \mathrm{O}}{4.7 \mathrm{n}}=9.4$

$$
B W=\frac{f_{s}}{Q_{s}}=\frac{1.8 \mathrm{kHz}}{9.4}=191.49 \mathrm{~Hz}
$$

h. $f_{2}=\frac{1}{2 \pi}\left[\frac{R}{2 L}+\frac{1}{2} \sqrt{\left[\frac{R}{L}\right]^{2}+\frac{4}{L C}}\right]$
$=\frac{1}{2 \pi}\left[\frac{4.7 \Omega}{2(3.91 \mathrm{mH})}+\frac{1}{2} \sqrt{\left[\frac{4.7 \Omega}{3.91 \mathrm{mH}}\right]^{2}+\frac{4}{(3.91 \mathrm{mH})(2 \mu \mathrm{~F})}}\right]$
$=\frac{1}{2 \pi}\left[601.02+11.324 \times 10^{3}\right]$
$=1897.93 \mathrm{~Hz}$

$$
\begin{aligned}
f_{1} & =\frac{1}{2 \pi}\left[-\frac{R}{2 L}+\frac{1}{2} \sqrt{\left[\frac{R}{L}\right]^{2}+\frac{4}{L C}}\right] \\
& =\frac{1}{2 \pi}\left[-601.02+11.324 \times 10^{3}\right] \\
& =1.707 \mathrm{kHz}
\end{aligned}
$$

$$
P_{\mathrm{HPF}}=\frac{1}{2} P_{\max }=\frac{1}{2}(42.58 \mu \mathrm{~W})=21.29 \mu \mathrm{~W}
$$

