1-02-k <Frequency Response of Resonant Circuits>

Dr. Norbert Cheung’s
Lecture Series

Level 1  Topic no: 02-k

Frequency Response of
Resonant Circuits

Contents
1. Introduction
2. Series Resonant Circuit

3. Glossary

Reference:
Introductory Circuit Analysis 14" edition, Boylesad & Olivari

Basic Circuit Analysis — Schaum’s Outline Series

Email: norbertcheung@szu.edu.cn
Web Site: http://norbert.idv.hk
Last Updated: 2024-06

Page 1



mailto:norbertcheung@szu.edu.cn
http://norbert.idv.hk/

1-02-k <Frequency Response of Resonant Circuits>

1. Introduction

This chapter introduces the very important resonant (or tuned) circuit, which is fundamental
to the operation of a wide variety of electrical and electronic systems in use today. The resonant
circuit is a combination of R, L, and C elements having a frequency response characteristic
similar to the one appearing in Fig. 21.1. Note in the figure that the response is a maxi-
mum for the frequency f,, decreasing to the right and left of this frequency. In other words,
for a particular range of frequencies, the response will be near or equal to the maximum.
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FIG. 21.1
Resonance curve.

There are two types of resonant circuits: series and parallel. As the
name implies, a series resonant circuit is a combination of series elements
that includes a resistor, inductor, and capacitor. As shown in Fig. 21.2(a),
a voltage source of fixed magnitude over the given frequency range is
applied to the circuit. As the applied frequency increases, there will be a
range of frequencies where the current through the circuit will peak as
shown in the same figure. In other words,

a series resonant circuit is one where the resonant curve of

interest is the current through the circuit due to an applied
voltage source.

A parallel resonant circuit has the same component list but in a paral-
lel combination of elements and the applied source is a current source of
fixed magnitude as shown in Fig. 21.2(b). In other words,

for parallel resonance the resonant curve of interest is the
voltage across the output terminals of the network due to
an applied current source.
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FIG. 21.2
Resonance: (a) series: (b) parallel.
2. Series Resonant Circuit
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FIG. 21.3
Series resonant circuit.
R X, =00 R X, =%0
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FIG. 214
(a) Very low frequencies. (b) Very high frequencies.
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For the mid-range of frequencies, the total impedance is defined by

Z, = R+ jX, — jX. = R+ j(X, —Xz) | (11

For the series, resonant circuit resonance is defined by the condition
that

X, = X, (21.2)

Inserting this equivalence into Eq. (21.1) will result in a total imped-
ance of simply the resistance

Z, =R (21.3)

s

where the subscript s denotes resonant value.

Resonant Frequency The resonant frequency can be determined
in terms of the inductance and capacitance by examining the defining
equation for resonance Eq. (21.2):

X, = X¢
Substituting yields
wL = L so that w? = —
wC
and w, = L (21.4a)
' JIC |
f = hertz (Hz)
1 :
or = —— | L = henries (H) (21.4b)
2V LC C = farads (F)

Peak Resonant Current The current through the circuit at reso-

nance 1is £ /0°
max - E LOO
R Z0° R

which is the maximum current for the circuit in Fig. 21.3 for an applied
voltage E since Z, is a minimum value. Consider also that the input
voltage and current are in phase at resonance.
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Resonant Voltage Levels Since the current is the same through the
capacitor and inductor, the voltage across each is equal in magnitude but
180° out of phase at resonance:

V, = (1 /0°)(X, Z90°) = IX, /90°

180° out of phase
V. = (1 20°9(X. £—90°) = IX. Z—90°

and, since X, = X, the magnitude of V, equals V. at resonance;
that 1s,

(21.5)

Phasor Diagram at Resonance Fig. 21.5, a phasor diagram of the
voltages and current, clearly indicates that the voltage across the resis-
tor at resonance is the input voltage, and E, I, and V, are in phase at
resonance.

Power Diagram at Resonance The average power to the resistor
at resonance is equal to [?R, and the reactive power to the capacitor and
inductor are /2X . and I2X,, respectively.

The power triangle at resonance (Fig. 21.6) shows that the total ap-
parent power is equal to the average power dissipated by the resistor
since 0, = Q. The power factor of the circuit at resonance is

and F, =1 (21.6)

Plotting the power curves of each element on the same set of axes
(Fig. 21.7), we note that, even though the total reactive power at
any instant is equal to zero (note that t = #'), energy is still being
absorbed and released by the inductor and capacitor at resonance.
A closer examination reveals that the energy absorbed by the inductor
from time 0 to ¢, is the same as the energy released by the capacitor from
0 to £,. The reverse occurs from f, to f,, and so on. Therefore, the total
apparent power continues to be equal to the average power, even though

Pr

P
Power Pc \

supplied to
element

0 '

Power v Pc = PL
returned by ¥

element

Pc Pr

FIG. 21.7
Power curves at resonance for the series resonant circuit.

Vi

Ve

FIG. 215
Phasor diagram for the
series resonant circuit at
resonance.

P=IR=EI

Qc=1'Xe

FIG. 21.6
Power triangle for the series
resonant circuit at
resonance.

the inductor and capacitor are absorbing and releasing energy. This con-
dition occurs only at resonance. The slightest change in frequency intro-
duces a reactive component into the power triangle, which increases the
apparent power of the system above the average power dissipation, and

resonance no longer exists.
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21.3 THE QUALITY FACTOR (Q)

The quality factor Q of a series resonant circuit is defined as the ratio of
the reactive power of either the inductor or the capacitor to the average
power of the resistor at resonance; that is,

reactive power

Q, = average power (21.7)

The quality factor is also an indication of how much energy is placed in
storage (continual transfer from one reactive element to the other) com-
pared to that dissipated. The lower the level of dissipation for the same
reactive power, the larger is the O factor and the more concentrated and
intense is the region of resonance.

Both low and high Q series resonant response curves appear in Fig. 21.8.

11 14

Low Qs

(a) (b)

FIG. 21.8
Effect of Q, as shape of resonant curve.

In general, the higher the quality factor, the higher the voltage across
the capacitor or inductor at resonance. In fact, it can be significantly high
and perhaps of concern.

Substituting for an inductive reactance in Eq. (21.7) at resonance
gives us

1°X
0, = ot
and 0, =Xl (21.8)
R R
If the resistance R is just the resistance of the coil (R,;) then
L=l = Uy = % R =R, (21.9)
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FIG. 219
Q, versus frequency for a series of
inductors of similar construction.

If we substitute
w&' = 2':‘Tf\

|
and then =
s 2~ LC

into Eq. (21.8), we have

_wl  2nfL 27 1
Q, = R R _R(ZW\/E)L
_ L(;)z[ﬁ} L
R\JLC VL )RJLC
and 0 = % % (21.10)

providing Q. in terms of the circuit parameters.
For series resonant circuits used in communication systems, Q. is

usually greater than 1. By applying the voltage divider rule to the circuit
in Fig. 21.3, we obtain

vV, = X, E = XLE(at resonance)
Zy
and V, = QF (21.11)
. v _ XcE _ XcE
Z, R
and Ve = QE (21.12)
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In the circuit in Fig. 21.10, for example, which is in the state of resonance,

0 = Xi _ 4800 _
‘ R 6 Q
and V, = V. = Q,E = (80)(10 V) = 800 V
WA—T00
N R=60 X =480
E=10V.L0 == Xc = 480 Q)
-

FIG. 21.10
High-Q series resonant circuit.

21.4 Z,VERSUS FREQUENCY

The total impedance of the series R-L-C circuit in Fig. 21.3 at any fre-
quency is determined by

Z; =R+ jX, — jX¢ or Z; = R+ j(X, — X¢)

The magnitude of the impedance Z, versus frequency is determined
by

ZT - \/R2 + (XL - Xc)2

The total-impedance-versus-frequency curve for the series resonant
circuit in Fig. 21.3 can be found by applying the impedance-versus-
frequency curve for each element of the equation just derived, written in
the following form:

Zr(f) = JIR(OP +[X,(f) = Xc(HP | (2113)

where Z, (f) “means” the total impedance as a function of frequency.

Page 8




1-02-k <Frequency Response of Resonant Circuits>

I v

For the frequency range of interest, we assume that the resistance R does
not change with frequency, resulting in the plot in Fig. 21.11. The curve
for the inductance, as determined by the reactance equation, is a straight
line intersecting the origin with a slope sensitive to the inductance of
the coil. The mathematical expression for any straight line in a two-
dimensional plane is given by

y=mx+b
Thus, for the coil,

X, =2nfL+0 = Q2aL)(f)+ 0
l U

y = m - x +b

(where 27 L 1s the slope), producing the results shown in Fig. 21.12.
For the capacitor,
1 1

X, = X f = —
c = gmc O X = ge

which becomes yx = k, the equation for a hyperbola, where
y(variable) = X

x(variable) = f

k(constant) = ——

FIG. 21.12
Inductive reactance versus frequency.

dR(/) ()

FIG. 21.1 FIG. 21.13
Resistance versus frequency. Capacitive reactance versus frequency.
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Z,(f) = JIR(HP + X, (f) = Xe (N

= JIR(HI? + X2

to the curves in Fig. 21.14, where X(f) = X, (f) — X-(f), we
obtain the curve for Z,(f) as shown in Fig. 21.15. The minimum
impedance occurs at the resonant frequency and is equal to the resistance
R. Note that the curve is not symmetrical about the resonant frequency
(especially at higher values of Z;).

The phase angle associated with the total impedance is

(X = Xe)
R

¢ = tan (21.14)

For the tan~1x function (resulting when X, > X ), the larger x is,
the larger is the angle 6 (closer to 90°). However, for regions where
X, > X,, one must also be aware that

tan~!'(—x) = —tan~'x (21.15)

Atlow frequencies, X > X, and @ approaches —90° (capacitive),
as shown in Fig. 21.16, whereas at high frequencies, X, > X, and ¢
approaches 90°. In general, therefore, for a series resonant circuit:

f < f,: network capacitive; I leads E
f > f,: network inductive; E leads I

f = f,: network resistive; E and I are in phase

4
(E leads I) |
90° - — — - — — — — - - _ _
450 | Circuit Capaciiive
Leading F, »
0° ___________________
ase L | Circuit inductive
- ' Lagging F,
geing I,
-90° ! -
fs f
FIG. 21.16

Phase plot for the series resonant circuit.

21.5 SELECTIVITY

X

XC>XL XL>XC

0 fs f
FIG. 21.14
Placing the frequency response of the

inductive and capacitive reactance of a
series R-L-C circuit on the same set of

axes.

0 s f

FIG. 21.15
Z. versus frequency for the series
resonant circuit.

If we now plot the magnitude of the current I = E/Z versus frequency
for a fixed applied voltage E, we obtain the curve shown in Fig. 21.17,
which rises from zero to a maximum value of E/R (where Z, is a min-
imum) and then drops toward zero (as Z, increases) at a slower rate
than it rose to its peak value. The curve is actually the inverse of the
impedance-versus-frequency curve. Since the Z; curve is not absolutely
symmetrical about the resonant frequency, the curve of the current ver-

sus frequency has the same property.

Page 10




1-02-k <Frequency Response of Resonant Circuits>

Ry;>R,>R, (L, C fixed)
! |
: R(smaller)
|
e P
HIW Ri(larger)
|
BW
[
I
0 1,
(a)
LyfCy = L,/Cy = L)J/C, (R fixed)
I
LJ/C,
|
I LA/Cs
1
i
1 : I L3/C4
10
il : i BW,
I |
i : I BW;
|
0 1
(b)
FIG. 21.18

Effect of R, L, and C on the selectivity
curve for the series resonant circuit.
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FIG. 21.17

I versus frequency for the series resonant circuit.

There is a definite range of frequencies at which the current is near its
maximum value and the impedance is at a minimum. Those frequencies
corresponding to 0.707 of the maximum current are called the band
frequencies, cutoff frequencies, half-power frequencies, or corner
frequencies. They are indicated by f, and f, in Fig. 21.17. The range
of frequencies between the two is referred to as the bandwidth (abbrevi-
ated BW) of the resonant circuit.

Half-power frequencies are those frequencies at which the power
delivered is one-half that delivered at the resonant frequency; that is,

Pypp = % Prax (21.16)
The above condition is derived using the fact that

PI'.I.'I:IX = II.E'I.E.XR
and Pypr = I*R=(0.7071 ) R=(0.5(I2_R) = %Pmﬂ

Since the resonant circuit is adjusted to “select” a band of frequen-
cies, the curve in Fig. 21.17 is called the selectivity curve. The term
is derived from the fact that one must be selective in choosing the fre-
quency to ensure that it is in the bandwidth.

The smaller the bandwidth, the higher is the selectivity.

The shape of the curve, as shown in Fig. 21.18, depends on each element
of the series R-L-C circuit. If the resistance is made smaller with a fixed
inductance and capacitance, the bandwidth decreases and the selectivity
increases. Similarly, if the ratio L/C increases with fixed resistance, the
bandwidth again decreases with an increase in selectivity.

In terms of Q, if R is larger for the same X, then Q, is less, as
determined by the equation Q, = w L/R.

A small Q,, therefore, is associated with a resonant curve
having a large bandwidth and a low level of selectivity,
while a large Q, indicates the opposite.

For circuits where Q, > 10 (indicating a tight curve around
the resonant frequency), a widely accepted approximation
is that the resonant frequency bisects the bandwidth and
that the resonant curve is symmetrical about the resonant
frequency.

These conditions are shown in Fig. 21.19, indicating that the cutoff fre-
quencies are then equidistant from the resonant frequency.
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For any Q_, the preceding is not true. The cutoff frequencies f, and
[, can be found for the general case (any Q) by first using the fact that a
drop in current to 0.707 of its resonant value corresponds to an increase
in impedance equal to 1/0.7071 = ~/2 times the resonant value, which
s R.

Substituting ~2R into the equation for the magnitude of Z,, we find
that

Y

Zy V{Rz X, —Xc)
becomes V2R = JR? 4+ (X, - X.)?

or, squaring both sides, that
2R? = R? + (X, — X )’
and R* = (X, — X.)’
Taking the square root of both sides gives us
R=X, - X, or R-X,+X.=0
Let us first consider the case where X, > X, which relates to

f> or w,. Substituting w,L for X; and 1/w,C for X and bringing both
quantities to the left of the equal sign, we have

1 1
R—w,L4+—=0 or Ru, —wiL 4+—==20
e 2 TR

which can be written as
bR, 1
L - LC
Solving the quadratic, we have
o _ =(=RL) £ JI=(RL)] - [-(4/LC)]
' 2
R 1 |R? 4
o “ta o TIc
. |
th — 4F = — || (H 21.17
wi fh= 2\/ + LC‘ (Hz) ( )

The negative sign in front of the second factor was dropped because

{1/2)\/(}3/,[)2 + 4/LC is always greater than R/(2L). If it were not

dropped, there would be a negative solution for the radian frequency w,.
If we repeat the same procedure for X, > X,, which relates to

w, or fysuchthat Z, = JR? + (X

« — X, )7, the solution f, becomes

1 R 1 [R 4
= LR 1R 4y (21.18)
fi = 5- L+2( ) +LC]( 2)
The bandwidth (BW) is
BW = f, — f, = Eq. (21.17) — Eq. (21.18)
and BW = f, — f, = & (21.19)
2N T onL '
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Substituting R/L = w /Q, from Q = w,L/R and /27 = f |w,
from w, = 2w f, gives us

or BW = £ (21.20)
Q,

which is a very convenient form since it relates the bandwidth to the Q,
of the circuit. As mentioned earlier, Eq. (21.20) verifies that the larger
the Q ., the smaller is the bandwidth, and vice versa.

Written in a slightly different form, Eq. (21.20) becomes

L—h _ 1 (21.21)

The ratio ( f, — f,)/f, is sometimes called the fractional bandwidth,
providing an indication of the width of the bandwidth compared to the
resonant frequency.

It can also be shown through mathematical manipulations of the per-
tinent equations that the resonant frequency is related to the geometric
mean of the band frequencies; that is,

fi = Nhhs (21.22)

21.7 PRACTICAL CONSIDERATIONS

In the real world, the circuit of Fig. 21.22 should appear as shown in
Fig. 21.22. The resistance R used in all the equations in this chapter up
to this point must include the source resistance R_, the resistance of the
inductor R,, and any resistance R, introduced by design to control the
shape of the resonant curve. For the future, therefore,

R=R, +R, +R, (21.23)

My MWA—WN 00
R, R, R, L
+
Coil —_
E, @ 1< C
= Source
FIG. 21.22

Series resonant circuit.
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5. Glossary — English/Chinese Translation

English

Chinese

frequency response
resonant circuit
resonance

series resonance circuits
tuned circuit

quality factor
selectivity

bandwidth

symmetrical

SR N
IEHREB RS
5
EREXIEIRFEES
IR
FREREEL
HEREME

G

XFR
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