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1-02-j <AC network theorems>

1. Independent vs dependent sources

The term independent specifies that the magnitude of the source is

independent of the network to which it is applied and that the source displays
its terminal characteristics even if completely isolated.

+8 04

FIG. 18.1
Independent sources.

A dependent or controlled source is one whose magnitude is determined (or
controlled) by a current or voltage of the system in which it appears.

5 ki) £0°

+ V - + V _
s e ———M—--- -
+ +
Voltage Voltage PRy
kv Controlled Controlled "1
@ (@)
1
1, M- -
— M- —
Current
Controlled kol
Current
k1 Controlled
__________ (b)
®) FIG. 18.3
Special notation for
FIG. 18.2 controlled or dependent
Controlled or dependent sources. sources.
EXAMPLE 18.3 Convert the voltage source in Fig. 18.8(a) to a
current source.
i i °
? . L = 5ki} ? .
120V 20V * Vo= MW AT 048 A S0 I§5H!
I S i B
{a) ih)
FIG. 18.8
Source conversion with & voltage-controlied voliage source.
Solution:
I E M0V 2120 ¥ 207) 2.4 kW A0°
TZ Sk T Sk0A0F

48 A 07 [Fig. 15.8(b)]
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2. Mesh Analysis

1. Assign a distinct current in the clockwise direction to

each independent closed loop of the network. It is not
absolutely necessary to choose the clockwise direction
for each loop current. However, it eliminates the need to

have to choose a direction for each application. Any direc-

tion can be chosen for each loop current with no loss in
accuracy as long as the remaining steps are followed
properly.

. Indicate the polarities within each loop for each imped-

ance as determined by the assumed direction of loop
current for that loop.

3. Apply Kirchhoff's voltage law around each closed loop in
the clockwise direction. Again, the clockwise direction
was chosen to establish uniformity and to prepare us for
the format approach to follow.

a. If an impedance has two or more assumed currents
through it, the total current through the impedance is
the assumed current of the loop in which Kirchhoff’s
voltage law is being applied, plus the assumed currents
of the other loops passing through in the same
direction, minus the assumed currents passing through
in the opposite direction.

. The polarity of a voltage source is unaffected by the

direction of the assigned loop currents.

4. Solve the resulting simultaneous linear equations for the

assumed loop currents.

EXAMPLE 18.5 Using the general approach to mesh analysis, find

the current I, in Fig. 18.10.

X, =20 J—XC_ 10
T[I §R=4ﬂ.
+ +
E =2V 20 E, =6V £0°
FIG. 18.10

Example 18.5.

The network is redrawn in Fig. 18.11 with subscripted impedances:

Z, = +jX, = +j20 E,
Z,=R=40 E,
Z,=—jX. = —j1Q

Steps I and 2 are as indicated in Fig. 18.11.

FIG. 18.11
Assigning the mesh currents and
subscripted impedances for the
network in Fig. 18.10.

= 2V.,L0°
= 6VZL0°
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Step 3: Step 4:
+E, —LZ, = Z,(1, = 1,) = 0 peserminants
2,1, -1,)-1,Z, -E, =0
El _ZZ
or E,-1Z —-1Z, +1,Z, =0
712Z2 + IIZ2 — 12Z3 - E2 =0 I] _ —Ez Zz + ZJ
—Z Z —Z
so that L(Z, +Z,)-1,Z, = E, ‘ 1; ’ Z +2Z
,(Z, +Z;)-1Z, = -E, : ? }
which are rewritten as = ElZ, +Z,) — B, (Z)

B (Zl + Zz){Zz + Z3) - (Zz)z
_ (E, — E,)Z, + E|Z,
2,2, + ,Zy + 1,7,

(Z, +Z,) - 1,Z, =E,
—1,Z, + L (Z, +Z;) = —-E,

Substituting numerical values yields

2V —-6V)4 Q)+ (2V)(—j1Q)
(+/20)(4 Q) + (+j20)(—j2Q) + (4 Q)(—j2 Q)

1 —

. —16—j2  —16—j2 16.12A/-172.87°
 j8—j22—j4 24 j4 = 4.47./6343°
— 3.61 A/—23630° or 3.61 A ~£123.70°

EXAMPLE 1B.6 Write the mesh currents for the network in
Fig. 13.13 having a dependent voltage source.

Solution:
Steps 1 and 2 are defined in Fig. 18,13,

Step 3: E, —LR, —R,(l, - 1,)=0
= Ro(l; — L)+ ¥V, — LR, = O
_ FIG. 18.13 Then substitute ¥, = (1, — I, )&,.
Applying mesh analysis to & network The result is two equations and two unknowns:
with a voltage-controlled voltage
SOUrce. E, —LR —R;(1-L;} =0

R,(L, — L)+ pR,(1, -1,y - LK,

=

EXAMPLE 18.B Write the mesh currents for the network in
Fig. 13.15 having a dependent current source.

Solution:
Steps 1 and 2 are defined in Fig. 18.15.

Step 3: E, -1LZ -1, + E, =10
and =1 -1,
Mowl = I, sothat kI, =1, -1, o 1, =10L(1-k) AG. 18.15

Applying mesh analysis fo 8 network
with a current-controlled current
SOURCE.

The result is two equations and two unknowns.
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EXAMPLE 18.9 Using the format approach to mesh analysis, repeat
Example 18.5. The block impedance diagram is repeated as Fig. 18.16
for convenience.

Solution:
Step 1 is as indicated in Fig. 18.16.

Steps 2 through 4 result in the following:

FIG. 18.16 L(Z, +2,)-1,Z, = E,
Assigning the mesh currents and 1,2, +Z,)-1Z, = -E,
subscripted impedances for the e = =
network in Fig. 18.10 (repeated). which can be rewritten as
W2, +Z,) - 1,Z, = E,
12, + 1,42, + 2,5 =K,

and we have the same set of equations as in Example 18.5 resulting in
the same solution of

1, = 3.61 A £-236.30°

EXAMPLE 18.10 Using the format approach to mesh analysis, find
the current I, in Fig. 18.17.

Solution: The nctwork is redrawn in Fig. 18.18:

Ry

610

+

E, =8V 220"

FIG. 18.17
Example 18.10.
FG. 18.18 Z, =R +jX,, =10+ j20 E, =8V.Z20°
Assigning the mesh currents and a N ; . s
Zy =R, — jXe =40-j802 E,=10V4£0

subscripted impedances for the
network in Fig. 18.17 Zy = +jX;, = +j6 0

EXAMPLE 18.11 Write the mesh equations for the network in
Fig. 18.20. Do not solve.

R,

FIG. 18.20
Example 18.11.
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Solution: The network is redrawn in Fig. 18.21. Again note the
reduced complexity and increased clarity provided by the use of sub-

scripted impedances:

Z, Z;

+ - + - +

Zs

+ | - + | -

+ —
| B @
a -+ -+ *

Il _[3

FIG. 18.21

Assigning the mesh currents and subscripted impedances for the

network in Fig. 18.20.

Z, =R, "‘jXL, Z, = R, _chz

Z, =R, +JXL2 Z; =R,
Z, = JXc]
and I.(Z, +Z,)-1,Z, = E,
I,(Z,+Z2Z,+2,)-1Z, +1,Z, =0
L(Z, +Z;)-1,Z, = E,
oo L (Z +Z,)-1,(Z,) +0 =E,
1,Z, —L(Z, +Z; + Z,) - 14(Z,) =0
0 -1,(Z,) -Li(Z, + Z;)=E,

EXAMPLE 18.12 Using the format approach, write the mesh equa-
tions for the network in Fig. 18.23.
Solution: The network is redrawn as shown in Fig. 18.23, where
Z, =R +jX,  Zy=jX,
Z, =R, Z, = .jXL3
and 1(Z, +Z,)-1,Z, - 1,Z, = E,
1.,(Z, + 2, +Z2,)-1Z, - 1,Z,
L,(Z, +Z,)- 1,2, - 17, = E

Il
o

¥}

Note the symmetry about the diagonal axis; that is, note the location of
—Z,, —Z,, and —Z off the diagonal.
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FIG. 18.22

Example 18.12.

FIG. 18.23

Assigning the mesh currents and
subscripted impedances for the
network in Fig. 18.22.
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Node Analysis

. Determine the number of nodes within the network.

. Pick a reference node and label each remaining node with

a subscripted value of voltage: V4, V5, and so on.

. Apply Kirchhoff's current law at each node except the

reference. Assume that all unknown currents leave the
node for each application of Kirchhoff’s current law.

. Solve the resulting equations for the nodal voltages.

EXAMPLE 18.13 Determine the voltage across the inductor for the

network in Fig. 18.24.
RI

0.5 kil

. 1=
Xe=Tm 3K (1)4111.6. 20F

FIG. 18.24

Solution:

Steps | and 2 are as indicated in Fig

Example 18.13.

. 18.25.

Step 3: Note Fig. 18.26 for the application of Kirchhoff's current law to

node ¥, :
El, = 1,
0=1+1I, +1,
Vi—-E VW V-V,
Lt 2 _q
z. Tz, Tz,
vy Vi vy V2
Z Zy Z Z3 poo
+ - -'I_' L

® H HOow® [

= =
FIG. 18.25 FIG. 18.26
Assigning the nodal voltages and subscripted Applying Kirchhoff's current law to the

impedances to the network in Fig. 18.24.

Rearranging terms gives

node V, in Fig. 18.25.

! ; 1 1 1 1 E
v, Vi vl—+—+— -\%l—l:—‘ (18.1)
e L - ‘\z, z, z, Z, Z,
: I Note Fig. 18.27 for the application of Kirchhoff's current law to
node V,.
Z 114 Cl)l
0=L+I,+1
V.=V, ¥,
i 2401=0
J_- Zl 24
FIG. 18.27 Rearranging terms gives
Applying Kirchhoff's current law to 1 1 1
the node VI, in Fig. 18.25. V. 7z vz |~ v, 7= -1 (18.2)
3 4 3
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Grouping equations 18.1 and 18.2 gives
1 1 1 1 E

V,|=— - - = V., —_— = —

lel 7, " z,] -[z}] Z

1 1 1
YV, |— =Vil—+ —|=1
‘lz, [ * l

1 1 - @
.1 _ 1l osmss-229
Z, "z, 7z, " o3m  jloma T Tkn "

1,

z,

1 1 1

- = 0.539 mS £21.80°
Yz, T2 T S5k "

V,[2.5 mS £=2.20°] =V, [0.5 m§ £0°] = 24 mA Z0°
V,[0.5mS£0°]  =V,[0.539 mS £21.80°] = 4 mA £0°

with
24 mA L0° —0.5 mS £0°
4 mA £0° —0.539 mS £21.80°
2.5 ms £=2.29° —0.5 m§ £0°
|[}.5 mS £0° —0.53% mS§ £21.80°

_ (24 mA £0°)(=0.539 mS§ £21.80°) + (0.5 mS £0°)(4 mA £0°)
T (2.5mS £=2297)({=0.539 mS £21.80%) + (0.5 mS £0%)(0.5 mS £0%)

v,:‘

=12.94 % 10=% V221.80% + 2 x 10=% V 20°
—=1.348 x 10=6 £19.51° 4 0.25 x 10=% »0°

(12,01 + jABL) = 1070V 4+ 2x 1070V
T =(1.271 + j045) x 107 + 0.25 x 10=°

=1001V = j4 81V 11.106 V £=154.33°

-1.021 = j045 = 1116/-15621F

V, = 9.95 V./1.88°

EXAMPLE 18.14 Write the nodal equations for the network in
Fig. 18.28 having a dependent current source.

1"
[z | -

TNX:

FIG. 18.28
Applying nodal analysis to a network with a
current-controlled current source.

Solution:
Steps | and 2 are as defined in Fig. 18.28.
Step 3: At node V.

I=1 +1,
vV, OV, -V,
— I=10
z, Tz,
1 1 1
d Vi|=—+—|=V,|=—| =1
. I[ZL+ZE 'lzz
Atnode V,,
I, + I, + kI =0
V.-V, V., [V,-V,
—_— = k|4—3|=0
z, +Z,+ l Z, l
1=k —k 1
d ¥ \"»s —|=10
an 17z, | Z. | 1Z,

resulting in two equations and two unknowns.
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4. Star-delta conversion

=ZA+ZB+Z‘:

Z,Z,

anc‘
Z,+Z,+Z,

7, =—2F5
P2+ Z,+ 2,

2,2y

o

A
\\
Y 4 For the impedances of the A in terms of those for the Y, the equations
6 are
X, +ZL2Z, +EZ
] RN
'\‘ £
N
A
%

Z,

’ Zy
I
K
W 7. — 27, +27, + 2,7,
" A =
e
FIG. 18.49
A=Y configuration. Z,

_22, +Z7Z, + 2,2,

Z,

(18.18)

(18.19)

(18.20)

(18.21)

(18.22)

(18.23)

In the study of dc networks, we found that if all of the resistors of
the A or Y were the same, the conversion from one to the other could be

accomplished using the equation

R, = 3Ry or Ry =

For ac networks,

w| =

Z, =37, or Z, =

5. Superposition Theorem

(18.24)

The sum of the powers delivered by each of two or more ac sources of
the same frequency is not equal to the power delivered by all the sources.
However, for a network with a dc source and an ac source the total power can

be determined by the sum of the powers delivered by each source.
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EXAMPLE 19.1 Using the superposition theorem, find the current I
through the 4 € reactance (X, ) in Fig. 19.1.

I
X, gao l X 7=30
X, 40
Jo 8 :
E, = 10VZ0° E,=5V/0°
- +
FIG. 19.1

Example 19.1.

l Solution: For the redrawn circuit (Fig. 19.2),
1
Z, = +jX, = j4Q

[zﬂ Z, = +jX,, = j4Q

E, Z; = —jX, = —j30

Considering the effects of the voltage source E, (Fig. 19.3) by replac-
= ing E, by a short circuit, we have

FIG. 19.2 . .
7,2 40Q)(—j3Q
Assigning the subscripted impedances to the 2.2”3 = 7 = -"Z = ( ‘{4 Q)( f3 a ) = @
network in Fig. 19.1. » + 4 J =] J

= —jl20 =120 /-90°
I = E, _ 10 V.£0° _1ov.oe
" Zys + 2, —j120+ 40 8QL-90°

= 1.25 A £90°

L l,.
. - . E Considering the effects of the voliage source E, (Fig. 19.4), we have
=

B A z
FIG. 12.3
Determining the effect of the voltage source E; on the currant | of the #. a
network in Fig. 18.1 by replacing E ; by a short circuit. - -
E.
I, o :
2 +

and Ej=0V ll" +E;
, Z,1, . -
= ’z (current divider rule) =
2+ 5 FIG. 19.4
_(=BMGLISAY  3TSA S oo gne Determining the effect of the voltage source E, on the current | of
j4n—=jin Jjl o the natwork in Fig. 19.1 by raplacing E, by a short cireuit.
Z, j40
Zy, = T’I - - j20  (becanse Z, = Z,) ]l‘
x, San |!
5V20° SVA0° = I
=t =5 o = 5A 290 .
T Zyp +Z, j20-j30 107-90
I
and  I" = L = 2.5 A So0° FIG. 19.5
2 Determining the resultant current for the
The resultant current through the 4 0 reactance X, (Fig. 19.5)is network in Fig. 13.1.
I=1-1"
=3T75AL—00° — (230 AL90% = —f3T5A — j250A
= —jh.25 A

I =625A°=90°
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6. Thevenin’s Theorem

Any two-terminal linear ac network can be replaced with
an equivalent circuit consisting of a voltage source and an
impedance in series, as shown in Fig. 19.23.

Since the reactances of a circuit are frequency dependent, the Thévenin Ey, @
circuit found for a particular network is applicable only at one frequency.

The steps required to apply this method to dc circuits are repeated
here with changes for sinusoidal ac circuits. As before, the only change
is the replacement of the term resistance with impedance. Again, depen- -
dent and independent sources are treated separately. FIG. 19.23

B0 EXAMPLE 19.7 Find the Thévenin equivalent circuit for the net-
work external to resistor R in Fig. 19.24.

+
E=10V£0° @ X 7T~ 20<R Solution:

Steps 1 and 2 (Fig. 19.25):

= Thévenin Zl = jXL = jSQ Zz = *jXC = —j2Q
FIG. 19.24 Z o

Example 19.7 '

&+

E=10V20° @ ‘—‘
Thévenin
O

FIG. 19.25
Assigning the subscripted impedances to the
network in Fig. 19.24.

Step 3 (Fig. 19.26):
ZZ,  (j8Q)(-j20) -j’16Q 160

Z = = = =
Tz 4+ 7, j80—j20Q j6 6 /90°
= 2.67Q /-90°
I z, o
L N
Zp, E_ Er»
o
FIG. 19.26 FIG. 19.27
Determining the Thévenin Determining the open-circuit
impedance for the network in Thévenin voltage for the
Fig. 19.24. network in Fig. 19.24.
Step 4 (Fig. 19.27):
Z.E
E, = — 27 (voltage divider rule)
T Z, +7, g
—j2a)1ov —j20V
- E2OA0V) _ =20V _ 33y, qs0°
j80Q —j20Q j6

Step 5: The Thévenin equivalent circuit is shown in Fig. 19.28.

Ly, = 267 £=00°
[ Z l I
L™ I\
2

+ +
Ep, =333 VZ-180° R W Ep=333V-180° R

L L

FIG. 19.28
The Thévenin equivalent circuit for the network in Fig. 19.24.
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7. Norton’s Theorem

. Remove that portion of the network across which the
Norton equivalent circuit is to be found.

. Mark (-, ¢, and so on) the terminals of the remaining o
two-terminal network.

. Calculate Z, by first setting all voltage and current sources
to zero (short circuit and open circuit, respectively) and I CT) Zy

then finding the resulting impedance between the two N

marked terminals.

. Calculate I, by first replacing the voltage and current o
sources and then finding the short-circuit current between =
the marked terminals.
. P ) FIG. 19.60
. Draw the Norton equivalent circuit with the portion of the . . .
Lo . . The Norton equivalent circuit for ac
circuit previously removed replaced between the terminals «
of the Norton equivalent circuit. networks.
Ly = Zy
o) Ly, e}
+
E E—
O

FIG. 19.61
Conversion between the Thévenin and Norton equivalent circuits.

EXAMPLE 19.14 Determine the Norton equivalent circuit for the
network external to the 6 € resistor in Fig. 19.62.

R, X
30 40

=60

45
E=20VLO°® Xe~T~5QR
I

Norton

FIG. 19.62
Example 19.14.

Solution:

Zi o Steps 1 and 2 (Fig. 19.63):
+ Z, =R +jX, =30+ j40 =50/,5313°
E z) . .
h Z, = —jXc =-j50
Step 3 (Fig. 19.64):
O o o o
al Norton 7, — 7z7Z, :(5 0 /£53.13%)(5Q£-90 )=25 0 /£-36.87
Z, +7Z 3Q04+40—-550Q 3—j1
FIG. 19.63 oo . ! ! !
Assigning the subscrfpteld impedances to the _ 250/-36.87 = 7910/-18.44° = 7.50Q — j2.50 Q
network in Fig. 19.62. 3.16 /—18.43°
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VL0 4a 53030

- I, =1, = E__YveD

L ‘ © i Z, 5Q0./53.13°

Z Zy
| “ =
e ‘ I,
s ° . 1

z, Iy
FIG. 19.64 E@ § "

Determining the Norton impedance for the ‘

network in Fig. 19.62.
FIG. 19.65

Determining 1, for the network in Fig. 19.62.

Step 5: The Norton equivalent circuit is shown in Fig. 19.66.

[
7.50 Q0 — j2.50
I RZ7500
rRg60Q — IN=4AL—53.I3°<T> R, 260
Xp 7= 250 0

Iy = 4A 2-53.13° CT) Zy

FIG. 19.66
The Norton equivalent circuit for the network in Fig. 19.62.
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5. Glossary — English/Chinese Translation

English Chinese
dependent power sources AR IR

ac mesh analysis ATRIE DT

ac node analysis R ROM

star delta conversion Star Delta F&ig

ac superposition theorem TRBINEE
Thevenin’s theorem HfEE

Norton’s theorem BRI
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