
Question 1 (15-3-5-c)

Calculate the total impedance of the circuits of Fig. 15.121. Express your answer in rectangular and polar forms, and draw the impedance diagram.

Question 2 (15-4-17)

*17. For the circuit of Fig. 15.133:

- **a.** Determine I, V_R , and V_C in phasor form.
- b. Calculate the total power factor, and indicate whether it is leading or lagging.

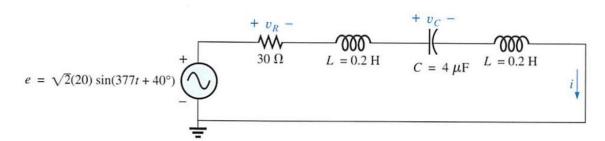
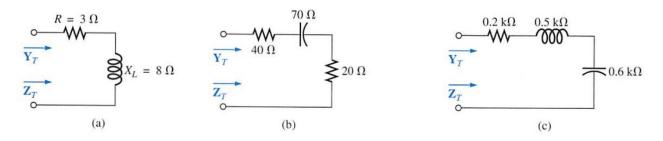



FIG. 15.133

- c. Calculate the average power delivered to the circuit.
- d. Draw the impedance diagram.
- **e.** Draw the phasor diagram of the voltages \mathbf{E} , \mathbf{V}_R , and \mathbf{V}_C , and the current \mathbf{I} .
- **f.** Find the voltages V_R and V_C using the voltage divider rule, and compare them with the results of part (a) above.
- **g.** Draw the equivalent series circuit of the above as far as the total impedance and the current *i* are concerned.

25. Find the total admittance and impedance of the circuits of Fig. 15.139. Identify the values of conductance and susceptance, and draw the admittance diagram.

Question 4 (16-2-7)

- *7. For the network of Fig. 16.42:
 - **a.** Find the current I_1 .
 - **b.** Find the voltage V_1 .
 - c. Calculate the average power delivered to the network.

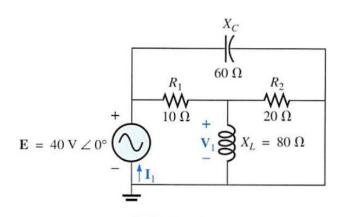


FIG. 16.42

Question 5 (16-2-10)

- *10. For the network of Fig. 16.45:
 - a. Find the total impedance Z_T and the admittance Y_T .
 - **b.** Find the source current I_s in phasor form.
 - c. Find the currents I₁ and I₂ in phasor form.
 - **d.** Find the voltages V_1 and V_{ab} in phasor form.
 - e. Find the average power delivered to the network.
 - f. Find the power factor of the network, and indicate whether it is leading or lagging.

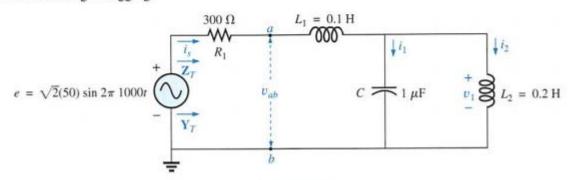


FIG. 16.45