Question 1 (15-3-5-c) Calculate the total impedance of the circuits of Fig. 15.121. Express your answer in rectangular and polar forms, and draw the impedance diagram. ## Question 2 (15-4-17) *17. For the circuit of Fig. 15.133: - **a.** Determine I, V_R , and V_C in phasor form. - b. Calculate the total power factor, and indicate whether it is leading or lagging. FIG. 15.133 - c. Calculate the average power delivered to the circuit. - d. Draw the impedance diagram. - **e.** Draw the phasor diagram of the voltages \mathbf{E} , \mathbf{V}_R , and \mathbf{V}_C , and the current \mathbf{I} . - **f.** Find the voltages V_R and V_C using the voltage divider rule, and compare them with the results of part (a) above. - **g.** Draw the equivalent series circuit of the above as far as the total impedance and the current *i* are concerned. 25. Find the total admittance and impedance of the circuits of Fig. 15.139. Identify the values of conductance and susceptance, and draw the admittance diagram. ## Question 4 (16-2-7) - *7. For the network of Fig. 16.42: - **a.** Find the current I_1 . - **b.** Find the voltage V_1 . - c. Calculate the average power delivered to the network. FIG. 16.42 ## Question 5 (16-2-10) - *10. For the network of Fig. 16.45: - a. Find the total impedance Z_T and the admittance Y_T . - **b.** Find the source current I_s in phasor form. - c. Find the currents I₁ and I₂ in phasor form. - **d.** Find the voltages V_1 and V_{ab} in phasor form. - e. Find the average power delivered to the network. - f. Find the power factor of the network, and indicate whether it is leading or lagging. FIG. 16.45