<u>Tutorial - 1-02-h</u>

Question 1 (14-46)

46. Perform the following operations (express your answers in rectangular form):

a.
$$\frac{(4+j3) + (6-j8)}{(3+j3) - (2+j3)}$$

b.
$$\frac{8 \angle 60^{\circ}}{(2 \angle 0^{\circ}) + (100+j100)}$$

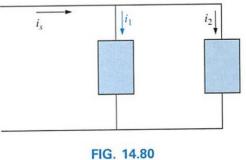
Question 2 (14-47)

47. a. Determine a solution for x and y if

$$(x + j4) + (3x + jy) - j7 = 16 \angle 0^{\circ}$$

b. Determine *x* if

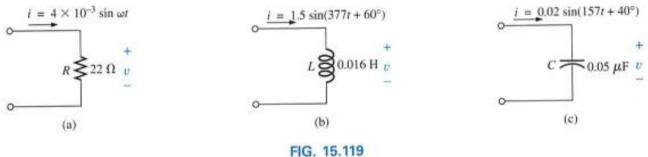
$$(10 \angle 20^{\circ})(x \angle -60^{\circ}) = 30.64 - j25.72$$


Question 3 (14-49)

- **49.** Express the following phasor currents and voltages as sine waves if the frequency is 60 Hz:
 - **a.** $I = 40 \text{ A} \angle 20^{\circ}$ **b.** $V = 120 \text{ V} \angle 0^{\circ}$ **c.** $I = 8 \times 10^{-3} \text{ A} \angle 120^{\circ}$ **d.** $V = 5 \text{ V} \angle 90^{\circ}$

Question 4 (14-51)

51. For the system of Fig. 14.80, find the sinusoidal expression for the unknown current i_1 if


$$i_s = 20 \times 10^{-6} \sin(\omega t + 90^\circ)$$

 $i_2 = 6 \times 10^{-6} \sin(\omega t - 60^\circ)$

Problem 51.

Question 5 (15-3)

 Find the voltage v for the elements of Fig. 15.119 using complex algebra. Sketch the waveforms of v and i on the same set of axes.

