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1-02-h <AC Phasors>

2. Complex Numbers, Rectangular Form and Polar Forms

A complex number represents a point in a two-dimensional plane
located with reference to two distinct axes. This point can also determine
a radius vector drawn from the origin to the point. The horizontal axis is
called the real axis, while the vertical axis is called the imaginary axis.
Both are labeled in Fig. 14.35. Every number from zero to +-co can be
represented by some point along the real axis. Prior to the development of
this system of complex numbers, it was believed that any number not on
the real axis did not exist—hence the term imaginary for the vertical axis.

Two forms are used to represent a complex number: rectangular and
polar. Each can represent a point in the plane or a radius vector drawn

from the origin to that point.

A Imaginary axis (j)
+

- +

Real axis

FIG. 14.35
Defining the real and imaginary axes of a
complex plane.

Rectangular Form

The format for the rectangular form is

C=2X+jy

Aj
C=X+jY

B <

-7

FIG. 14.36
Defining the rectangular form.
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Polar Form

The format for the polar form is

C=2/0 (14.22)

with the letter Z chosen from the sequence X, Y, Z.

Z indicates magnitude only, and 6 is always measured counterclock-
wise (CCW) from the positive real axis, as shown in Fig. 14.40. Angles
measured in the clockwise direction from the positive real axis must
have a negative sign associated with them.

'Y
7 C
'\a
— +
—
FIG. 14.40

Defining the polar form.

Conversion between Forms

Rectangular to Polar

Z=JXZ 572 (14.24)
o — tan“% (14.25)

Polar to Rectangular

X = Zcos0 (14.26)

Y = Zsinf (14.27)
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C=Z/0=X+jY

Vi
|
I
Z : v
I
6 t
— X | +
—j
FIG. 14.45
Operation of complex numbers
By definition, ' i
j=~=1 (14.28)
Thus, Jjr = -1 (14.29)
1 i
and == —j (14.30)
J

Complex Conjugate

The conjugate or complex conjugate of a complex number can be
found by simply changing the sign of the imaginary part in the rectan-
gular form or by using the negative of the angle of the polar form. For
example, the conjugate of

C=2+j3
is 2 — j3
Reciprocal

The reciprocal of a complex number is 1 divided by the complex num-
ber. For example, the reciprocal of

C=X+jY

1

is —
X + jY
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and that of Z /6 is

Z /0
Addition
C, = +X,+j¥, and C, = X, + jY,
then C,+C, =(£X, £ X,)+ j(xY, £ Y,) | (1431)
Subtraction

C, = +X, £j¥, and C, = +X, + jY,

then C, - C, =[£X, — (£X,)] + jl£Y, — (£Y,)] | (14.32)

Addition or subtraction cannot be performed in polar form
unless the complex numbers have the same angle ) or
unless they differ only by multiples of 180°.

Multiplication

C,=X+jYy and C, =X, + jY,
then C,-C,. X, + jY,
X, + jY,
X, X, + jY, X,
+ jX,Y, + j?Y)Y,
X, X, + j(Y,X, + X,¥,) + ¥,Y,(—1)

and Cl * Cz = (X]XQ — Yle) + j(YlX2 + XIYZ) (14-33)

In polar form, the magnitudes are multiplied and the angles added
algebraically. For example, for

C,=24, ad C, =Z, /0,

we write C,-C, = 2,2, /0 + 6 (14.34)
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Division
C, =X, +j¥, and C, =X, + jY,
then & — (X, + jY)(X, — jY,)
C, (X, + jHL)(X, — jY;)
_ (XX, + YY) + (XY — X\Y)
X3 + Y3
and C, XX, +1ny 4 X,Y, — XY, (14.35)

C, Xi+7Y2 I 7x1 11

In polar form, division is accomplished by dividing the magnitude of
the numerator by the magnitude of the denominator and subtracting the
angle of the denominator from that of the numerator. That 1s, for

C, = Z, 46, and C, =27, /0,

we write CL_Z 5 o, (14.36)
C2 ZZ

EXAMPLE 14.26 Perform the following operations, leaving the
answer in polar or rectangular form:

(2+j3)+(4+j6)  (2+4)+ j(3+6)
& T+ =3—=43) (T=-3)+ j(T+3)
(64 j9)(4 - jl10)
(44 j10)(4 = j10)
_ O + DA + jI4 (D) = (6)(10)]
42 4+ 10?2

=72 h98 - jo21
116

(50 £30°)(5 + j5) _ (50 £30°)(7.07 £45°) _ 353.5 /75°
10 /—20° 10 /—20° ~ 10 £Z=20°

— 35.35 /75°— (—=20°) — 3535 /95°

(2.£20°)° (3 + j4) _ (2.£20°)(2 £20°)(5 £53.13°)

c. 8 — j6 10 £—36.87°
(4 /40°)(5 £53.13°) 20 /93.13°
- 10 /—36.87° 10 £=36.87°

— 2 /93.13° — (=36.87°)— 2.0 /130°

d. 3/27° —6/—40° = (2.673 + j1.362) — (4.596 — j3.857)
= (2.673 — 4.596) + j(1.362 + 3.857)
= —1.92 + j5.22
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2. Phasors

the addition (or subtraction) of two sinusoidal voltages
of the same frequency and phase angle is simply the sum
(or difference) of the peak values of each with the sum (or
difference) having the same phase angle.

v =2 sin wt . j
u(V) vy =3 sin ot U= 5 sin wf
5 r
B :/7I— “\‘\/ Uy //,—-‘\\\ V=2 V£0° V2=3 Ve
3= 2 y
252 \ / \ l—3 v%.'
! A\ »’/ \‘ N - .
0 s 3 2 5 37 ] 0 =2V \ .
Zli=0s72 \ T i @ V=5 V0
\ / 5V
\\____/,
(a) (b)
FIG. 14.66
Finding the sum of two sinusoidal waveforms with the same frequency and phase angle.
J
T |
I
I
tuv) v, =2 sin ot A !
=45V v, =4 sin (@t + 90°) av|
_____ L —— - 1
AV ekl N N V, =4V 290° V=447V £6343°
7 ¥ 1 Y :
/ <— -2V / - 6§.43°|
vy ! A ! \ |
- / A L 3\ |
/] vy % \ ;2 \ 3w 2V
\ .
LeJ05 v S V=2V 20°
| < L/
=63 |« ~7
vp=4.5sin (wt + 63°) vy = 4.47 sin (0! + 63.43°)

(@) (b)
FIG. 14.67
Finding the sum of two sinusoidal waveforms that are out of phase.

Since the rms, rather than the peak, values are used almost exclu-
sively in the analysis of ac circuits, the phasor will now be redefined for
the purposes of practicality and uniformity as having a magnitude equal
to the rms value of the sine wave it represents. The angle associated with
the phasor will remain as previously described—the phase angle.

In general, for all of the analyses to follow, the phasor form of a sinu-
soidal voltage or current will be

V=V and I = 1/60

where V and I are rms values and # is the phase angle. It should be
pointed out that in phasor notation, the sine wave is always the refer-
ence, and the frequency is not represented.
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Phasor algebra for sinusoidal quantities is applicable only
for waveforms having the same frequency.

EXAMPLE 14.27 Find the sum of the following sinusoidal functions
i, = 5 sin(wt + 30°)
i, = 6 sin(wr + 60°)

a. Using a phasor approach
b. Using a graphical approach

Solutions:

a. The two waveforms and the resultant sum appear in Fig. 14.68. It
was obviously a tedious process to add the two waveforms with this
approach. Take note that the position of each vector generating the
waveforms shown is asnapshotof their positionat = 0°(t = 0 s).
The sum of the two waveforms is obviously a vector addition of the
two waveforms as shown to the left of Fig. 14.68.

b. In phasor form:

i, = 5 sin(wt 4+ 30°) = 5 A £30°

i, = 6 sin(wt + 60°) = 6 A £60°

I, =1, +1,

5AZ30° + 6 A £60°

(433 A+ j25A)+(3A+ j52A)

133 A4 j1.T A

= 10.63 A Z46.41°

and ir = 10.63 sin(wt + 46.41°) as obtained graphically.

i
/\ ip=ip+ iy = 10.63 sin(wt + 46.41°)

i; =5 sin(wf + 30°)

6A

'
\ \ 0° wt
/ u=05)
B, = 30° 0,=60° 6 =30 /

ip =6 sin(w! + 60°)
(a) (b)

FIG. 14.68
Example 14.27
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EXAMPLE 14.30 Find the input voltage of the circuit in Fig. 14.70 if

v, = 50sin(377t + 30°)

a

_ f = 60 Hz
v, = 30sin(377t + 60°)

€in vy,

FIG. 14.70
Example 14.30.

Solution: Applying Kirchhoff’s voltage law, we have
€in = U, T U,

Converting from the time to the phasor domain yields

v, = 50sin(377t + 30°) = V, = 35.35V £30°

v, = 30sin(377t + 60°) = V, = 21.21 V £60°
Converting from polar to rectangular form for addition yields
. = 3535V 430° = 30.61V + j17.68V
V, = 21.21V /60° = 10.61 V + j18.37 V

Then

E. =V, +V,=(3061V+ j17.68V)+(10.61V + j18.37V)

=41.22V + j36.05V
Converting from rectangular to polar form, we have
E, = 4122V + j36.05V = 5476 V £41.17°

Converting form the phasor form to the time domain, we obtain
E, = 5476V Z41.17° = ¢, = N2(54.76)sin(377t + 41.17°)
and e, = 77.43 sin(377t + 41.17°)
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|
wla |

0
30° (=
41.17° =

60°—»

FIG. 14.71
Solution to Example 14.30.

3. Using Phasors in R, L., and C

Resistive Elements

o
—_—
ip =1, sinwt
+
R § Vp =V, sinwf
o
FIG. 15.2

Resistive ac circuit.
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If we apply phasor algebra as follows,

we find that the format is such that we need to assign an angle to the resistive
component in order to apply phasor algebra. For the moment let us assign the
angle 0, to the resistive component so we end up with the following:

IR=VR=VRéO=ﬁ¢OO_9R

R R/Z0, R

Now since we know the angle associated with the current must also
be zero degrees, the angle 6, must be zero degrees. Now if we apply
phasor algebra we obtain the following:

Ve Ve Z0° V

I, = & = — = & /0°
R R/° R

so that in the time domain
Vv
ip = vﬁ(?) sin wt

which agrees with the development of Chapter 14.

For the future, therefore, whenever we encounter a resistor in the ac
domain, we will assign an angle of zero degrees to form a complex num-
ber notation. The standard format will therefore be

Z, = R/0° (15.1)

It is important to realize, however, that Z , is not a phasor,

even though the format R/0° is very similar to the phasor
notation for sinusoidal currents and voltages. The term

phasor is reserved for quantities that vary with time, and R and
its associated angle of 0° are fixed, nonvarying quantities.
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Example
EXAMPLE 15.1 Using complex algebra,

a. Find the current i, for the circuit in Fig. 15.3.
b. Sketch the waveforms of i, and v.

Solution:
a. v, = 100 sin wt = phasor form V, = 70.71 V £0°
\4 V. Z60  70.71 VZ0°
I = R = k = == 1414 A 400
R Zp,  RLO° 5Q /0°
and i, = V2(14.14) sin wt = 20 sin wt
b. Note Fig. 15.4.
0 100 V---—> Sk
i
N 20A & 37
. == n 2 27
50 § Ugp = 100 sin wt o % ‘ 7 >
O
FIG. 15.3 FIG. 15.4

Example 15.1. Waveforms for Example 15.1.

AJj
IR VR
14.14 A |
70.71 V——
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EXAMPLE 15.2 Using complex algebra,

a. Find the voltage v, for the circuit in Fig. 15.5.
b. Sketch the waveforms of v, and i.

Solution:
a. ip = 4 sin(wt + 30°) = phasor form I, = 2.828 A Z30°
V, = I,Z, = (I £0)(R£0°) = (2.828 A Z30°)(2Q £0°)

= 5.656 V £30°

and v, =~2(5.656)sin (wt + 30°) = 8.0 sin (wt + 30°)
b. Note Fig. 15.6.

A
ig = 4 sin(wt + 30°)
o .
3
-2-77
+ 1 1 >
)0 § Uk 7 27 ot
o
FIG. 155 FIG. 15.6
Example 15.2. Waveforms for Example 15.2.

AJ
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Inductive Elements

We learned in Chapter 14 that for the pure inductor in Fig. 15.8, the
voltage leads the current by 90° and that the reactance of the coil X is
determined by wL. We have

v, = V_sinwt = phasor formV = V Z0°

Applying Ohm’s law and following a similar path to that applied to the
resistive element, we find that

vV, V. Z0° v,

= = L /0° =0
X, X,/Z0, X,

I, =

where V, and I, are the effective values in the phasor format.
Since v, leads i, by 90°, i, must have an angle of —90° associated with it. To
satisfy this condition, §, must equal +90°. Substituting #, = 90°, we obtain

v, £0° v, 1%
- = /0°—90° = —L /—90°
EoXx, /900 X, X,

so that in the time domain,

V

i, = v’i[—’u] sin(wt — 90°)
X L

We use the fact that §, = 90° in the following polar format for

inductive reactance to ensure the proper phase relationship between the
voltage and current of an inductor:

Z, = X, /90° (15.2)
C—I-
i
+
X; = wL gUL = V,, sin wt
O
FIG. 15.8

Inductive ac circuit.
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EXAMPLE 15.4 Using complex algebra,

a. Find the voltage v, for the circuit in Fig. 15.11.
b. Sketch the v, and i, curves.

Solution:
a. i, = Ssin(wt + 30°) = phasor form I, = 3.535 A Z30°
V,=1,Z, =(I,20)(X, 790°) = (3.535 A Z30°)(4 Q /+ 90°)
= 14.140 V £120°

and v, = V2(14.140) sin (wt +120°%) = 20 sin(wt + 120°)
b. Note Fig. 15.12.

i;= 5sin(wt + 30°)
C—P'
+
XL = 4 Q g UL
o
FIG. 15.1 FIG. 15.12
Example 15.4. Waveforms for Example 15.4.
AJ
\/2
- \ﬁadil‘lg
\ \
< -~
S\ ran
(& 3‘5“5
- 30°
3 +
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Capacitive Elements

ve = V, sinwt = phasor form V. = V. Z0°

Applying Ohm’s law and continuing as before, we find

[ — Ve _ Ve Z0° _ Y /0° — 6,
© X, X, Z0. X

where V. and /. are effective values in the phasor notation.
Since i leads v, by 90° i, must have an angle of +90° associated

with it. To satisfy this condition, 6. must equal —90°. Substituting
0. = —90° yields

1= Yo _ Ve L0 _ Ve ,0°-(-90°) _ Ye 900
© X, X.Z-90° X, X,

C

8o, in the time domain,

V.
i =2 [—C]sin (wt + 90°)
Xc

We use the fact that . = —90° in the following polar format for
capacitive reactance to ensure the proper phase relationship between the
voltage and current of a capacitor:

Z. = X, /—90° (15.3)

Xe = oC 7= ve=V, sin wt

FIG. 15.14
Capacitive ac circuit.
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EXAMPLE 15.6 Using complex algebra,

a. Find the voltage v for the circuit in Fig. 15.17.
b. Sketch the v, and i, curves.

Solution:
a. i = 6 sin(wr — 60°) = phasor notation I . = 4.242 A /—60°
Ve=1,Z,= (I,240)X.2£-90°) = (4.242 A Z—-60°)
(0.5Q 2£-90°)
= 2.121 V £-150°
and v = V2(2.121) sin (wt — 150°) = 3.0 sin (wt — 150°)
b. Note Fig. 15.18.
ic = 6sin (wt — 60%) 6A

—

O

3V

Xe = 0507 ve

O
Example 15.6. Waveforms for Example 15.6.
Aj
\\‘//
R akh R
\n \f'L \ + ;
/\" 60° n, P
VC\ -
Leading P
Ic
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Impedance Diagram

Now that an angle is associated with resistance, inductive reactance, and
capacitive reactance, each can be placed on a complex plane diagram, as
shown in Fig. 15.20. For any network, the resistance will always appear
on the positive real axis, the inductive reactance on the positive imagi-
nary axis, and the capacitive reactance on the negative imaginary axis.
The result is an impedance diagram that can reflect the individual and
total impedance levels of an ac network.

lhj

X, £90°

TN

-90° RO

+y

Y XC 4900

FIG. 15.20
Impedance diagram.

For any configuration (series, parallel, series-parallel, and so
on), the angle associated with the total impedance is the
phase angle by which the applied voltage leads the source
current. For inductive networks, 6, will be positive, whereas
for capacitive networks, 6, will be negative.

It is important to be aware that if the total impedance of a
network has a positive angle associated with it, the network
is inductive in nature and has alagging power factor and the
applied voltage will lead the current drawn by the network.
If the total impedance of a network has a negative angle
associated with it, the network is capacitive in nature and
has a leading power factor and the applied voltage will lag
the current drawn by the network.
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Examples

EXAMPLE 15.7 Sketch the impedance diagram for a 22 ohm resistor.
Solution: Note Fig. 15.21.

FIG. 15.21
The impedance diagram for a 22 Q resistor.

tive reactance and 2 k() capacitive reactance.

EXAMPLE 15.8 Sketch the impedance diagram of a 1.2 kQ induc-
Solution: Note Fig. 15.22.

T x = 12k0 2000
12kQ

1
| n

2kQ

l Xo=2kQ £-90°

FIG. 15.22
The impedance diagram for a 1.2 kQ inductive reactance and a
2 kS capacitive reactance.
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4. Glossary — English/Chinese Translation

English

Chinese

Impedance diagram
Phasor diagram
Series configuration
Voltage divider rule
Phasor

Phasor diagram
Polar form

Power factor
Reactance
Reciprocal
Rectangular form
AC Impedance

AC Reactance

BEHUE
HEE
HYEkcE
SRR
iE!
HEE
ET 7=
DIEREEL
i
{2y
S
ZiftkETT
AR

%l
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