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1-02-g <AC Sinusoidal Waveform>

1. The Sinusoidal Waveform

The terms defined in the previous section can be applied to any type
of periodic waveform, whether smooth or discontinuous. The sinusoi-
dal waveform is of particular importance, however, since it lends itself
readily to the mathematics and the physical phenomena associated with
electric circuits. Consider the power of the following statement:

The sinusoidal waveform is the only alternating waveform
whose shape is unaffected by the response characteristics of
R, L, and C elements.

The units of measurement Degrees and Radians, are related as

shown in Fig. 13.14. The conversions equations between the two are the
following:

Radians = (l;{}") X (degrees) (13.6)

Degrees = (180 ) X (radians) (13.7)
T

The velocity with which the radius vector rotates about the center,

called the angular velocity, can be determined from the following
equation:

distance (degree or radians)
time (seconds)

Angular velocity =

(13.8)

Substituting into Eq. (13.8) and assigning the lowercase Greek letter
omega (w) to the angular velocity, we have

W =

(13.9)

a
t

and a = wit (13.10)
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w = 100 radf';
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Decreased w, increased T,

decreased f

w = 500 rad/s

&

\_/.:f

_C

_I

Increased w, decreased T,
increased f

FIG. 13.17

Demonstrating the effect of w on the
frequency and period.

2T
= — d/s
w T (rad/s)

(13.11)

In words, this equation states that the smaller the period of the sinu-
soidal waveform of Fig. 13.16(1), or the smaller the time interval before
one complete cycle is generated, the greater must be the angular velocity
of the rotating radius vector. Certainly this statement agrees with what
we have learned thus far. We can now go one step further and apply the
fact that the frequency of the generated waveform is inversely related to
the period of the waveform; thatis, f = 1/T. Thus,

v, i, etc.

P ’23 270°315°360°

= 2nf (rad/s)

AU, i, efc.

(13.12)
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(b)
FIG. 13.15
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2. Sinusoidal Voltage and Current

The basic mathematical format for the sinusoidal waveform is

A _sin o

(13.13)

Due to Ec'l (13.10), the general format of a sine wave can also be
written

A, sin wt

(13.14)

with wt as the horizontal unit of measure.

For electrical quantities such as current and voltage, the general
format is

i = I, s wt = [, sin «

e = E sinwt = E_sin «

Am
m, 180° 2, 360°
0 a (° or rad)
Ay,
FIG. 13.18

Basic sinusoidal function.
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EXAMPLE 13.9

a. Determine the angle at which the magnitude of the sinusoidal func-
tion v = 10 sin 377t is 4 V.
b. Determine the time at which the magnitude is attained.

Solutions:

a. Eq. (13.15):

v
v a, = sin! 2= = sin-! 2V _ §in-1 0.4 — 23.58°
E 10

m

However, Fig. 13.19 reveals that the magnitude of 4 V (positive)
will be attained at two points between 0° and 180°. The second
A~ — A occsoos intersection is determined by

a, = 180° — 23.578° = 156.42°

0 o 90° a 180° 4 In general, therefore, keep in mind that Eqs. (13.15) and (13.16)
will provide an angle with a magnitude between 0° and 90°.
b. Eq.(13.10): @« = wr, and so t = a/w. However, o must be in radi-

FIG. 13.19
Example 13.9. ans. Thus,
vrad) = ——(23.578%) = 0.412 rad
a(rad) 180"( ) a
and 1 = a _ 0.412 rad — 1.09 ms
w 377 rad/s

For the second intersection,

a(rad) = —2— (156.422°) = 2.73 rad

180°
=@ 273rad ooy s
- w 377 rad/s

13.6 PHASE RELATIONS

Thus far, we have considered only sine waves that have maxima at /2
and 37 /2, with a zero value at 0, 7, and 2, as shown in Fig. 13.25. If
the waveform is shifted to the right or left of 0°, the expression becomes

A, sin (wf % 6) (13.17)

where # is the angle in degrees or radians that the waveform has been

shifted.
If the waveform passes through the horizontal axis with a

positive-going (increasing with time) slope before 0°, as shown in
Fig. 13.27, the expression is

A, sin (wt + 0) (13.18)
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A
_l__ - m

1
A, sinf (m - 6)
2
(27 — @)
FIG. 13.27

Defining the phase shift for a
sinusoidal function that crosses the
horizontal axis with a positive slope

before 0°.

A, sin (wt — 0) (13.19)

Finally, at wfr = o = 0° the magnitude is A,, sin (—f), which, by a
trigonometric identity, is —A,, sin 6.

If the waveform crosses the horizontal axis with a positive-going
slope 90° (7/2) sooner, as shown in Fig. 13.29, it is called a cosine

wave; that 1s,

sin (wt + 90°) = sin(wt + %) = cos wt (13.20)

or sin wt = cos(wt — 90°) = cos(wr — %] (13.21)

The terms leading and lagging are used to indicate the
relationship between two sinusoidal waveforms of the same
frequency plotted on the same set of axes.

_ phase shift(no. of div.)
- T (no. of div.)

0 x 360° (13.24)
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‘ Q27 + 6)
l 9 (m + 6) 1

_Ams.inﬂ/ \/ a
FIG. 13.28

Defining the phase shift for a sinusoidal
function that crosses the horizontal axis with
a positive slope after 0°.

'
COS
A sin o
m . - </
w LN §71'
_J - L
2 2 \TT 27
—— 0 \ / a-_
0()° 5 ’
&
T - -
FIG. 13.29

Phase relationship between a sine wave and
a cosine wave.

3. Average and rms values

Average value

algebraic sum of areas

G (average value) =
( = ) length of curve

(13.26)

The algebraic sum of the areas must be determined since some
area contributions are from below the horizontal axis. Areas above the
axis are assigned a positive sign and those below it a negative sign. A
positive average value is then above the axis, and a negative value is

below it.
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EXAMPLE 13.14 Determine the average value of the waveforms in
Fig. 13.44.

v
* (Square wave) 14V

N B

0 1 2 3 |4 1 (ms) 0 1 2 3 |4 t (ms)

-6V
10V G

(a) ®)

FIG. 13.44
Example 13.14.

Solutions:

a. By inspection, the area above the axis equals the area below over
one cycle, resulting in an average value of zero volts. Using
Eq. (13.26) gives

st (10 V)(1 ms) — (10 V)(1 ms) - 0

G =10Y
2 ms 2 ms
b. Using Eq. (13.26) gives
14V
G=(14 V)Ams) — (6 V)dms) 14V — 6V=ﬂ=4v
sv e PEUS IO 2 ms 2 2
0 1 |2 4
_6V|_f B+ 19 as shown in Fig. 13.45.

In reality, the waveform in Fig. 13.44(b) is simply the square

FIG. 13.45 wave in Fig. 13.44(b) with a dc shift of 4 V; that is,

Defining the average value for the waveform v, =v, +4V
in Fig. 13.44(b). o

Effective (rms) value

Calculus format: I _ (13.31)

ms
T

Jarea (i* (1)
which means I.. = % (13.32)

In words, Eqgs. (13.31) and (13.32) state that to find the rms value, the
function i(z) must first be squared. After i(7) is squared, the area under
the curve is found by integration. It is then divided by 7, the length of
the cycle or the period of the waveform, to obtain the average or mean
value of the squared waveform. The final step is to take the square root
of the mean value. This procedure is the source for the other designation
for the effective value, the root-mean-square (rms) value. In fact, since
rms 1s the most commonly used term in the educational and industrial
communities, it is used throughout this text.
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The relationship between the peak value and the rms value is the
same for voltages, resulting in the following set of relationships for the
examples and text material to follow:

1
Iy = 75 I = 0.7071,
) (13.33)
Erms — Tz Em - OTUT‘Em
Similarly,
= N2 = 14141
(13.34)
m - \/EE]'ITIIS — 1414Em1~3
EXAMPLE 13.21 The 120V dc source in Fig. 13.61(a) delivers 3.6 W
to the load. Determine the peak value of the applied voltage ( E,, ) and
the current (/,,) if the ac source [Fig. 13.61(b)] is to deliver the same
power to the load.
‘Jdc ‘— i:l(.‘ !m
o 7
‘(dc JI-:u:
Y R e
[
E e— EIH
+ +
EZ="120V P=36W P=36W
0 t T Load @ Load
(a) (b)
FIG. 13.61
Example 13.21.
Solution:
Pdc = vdcldc
and I, = fae _36W _ 3500
Vie 120V

I, =21, = (1.414)(30 mA) = 42.42 mA
= V2E, = (1.414)(120 V) = 169.68 V
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EXAMPLE 13.23 Calculate the rms value of the voltage in Fig. 13.64.

o (V)
- 1 cycle -
4 E = = =
] -
2 - - - - i C— 10 i(s)
-10
FIG. 13.64

Example 13.23.

Solution: v? (Fig. 13.65):

kgl {VZ]
100
6 _ _ _
4 _________ I —————————— 1] -
0 2 4 6 8 10 1(s)
FIG. 13.65
The squared waveform of Fig. 13.64.
vV o= J[IDD V2)(2s) + (16 V2)(s) + (4 V2)(2 s)
ms ID 5
B \/znn V2s 4+ 32V2s + 8 V2s
B 10 s
- %Vﬂ — V24 V>
=49V
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4. Response to L-R-C to AC waveforms

Resistor

For power-line frequencies and frequencies up to a few hundred kilo-
hertz, resistance is, for all practical purposes, unaffected by the frequency
of the applied sinusoidal voltage or current. For this frequency region, the
resistor R in Fig. 14.4 can be treated as a constant, and Ohm’s law can be

applied as follows. For v = V_ sin wi,
V sin wt vV . :
=Y = m> = _ Imginwr = I sinwt
R R m
Vv
where I, = ?'" (14.2)

In addition, for a given i,

)= IR = ([, sinwt)R = [ Rsinwt = V, _sinwt

m

where vV, =1,R (14.3)

A plot of v and i in Fig. 14.5 reveals that

For a purely resistive element, the voltage across and the
current through the element are in phase, with their peak
values related by Ohm’s law.

m

+ 0 ™ 2 o
§Rv

FIG. 145
The voltage and current of a resistive
FIG. 144 element are in phase.
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Inductor

We found in Chapter 11 that the voltage across the inductor of Fig. 14.6
is directly related to the inductance of the coil and the rate of change
of current through the coil. A relationship defined by the following
equation:
v, = L 7

Consequently, the higher the frequency, the greater is the rate of
change of current through the coil, and the greater is the magnitude of
the voltage. In addition, we found in the same chapter that the inductance
of a coil determines the rate of change of the flux linking a coil for a
particular change in current through the coil. The higher the inductance,
the greater is the rate of change of the flux linkages, and the greater is
the resulting voltage across the coil.

For a sinusoidal current defined by

i

; = 1, sinwt

we can calculate the voltage across the coil by differentiating the current
through the coil and substituting into the basic equation above. That is,
di . :
v, = LEL = Li(Im sinwt) = LI, i(smmr}
dt dt dt

= LI, (wcoswt)

L:v; leads i; by 90°,
v
i, = I sinwt L
o — L m w ,/ X
jﬂ'
T T 2w o
+ 5 @
L v
FIG. 14.7
© For a pure inductor, the voltage across the
FIG. 14.6 coil leads the current through the coil by 90°.

Page 12




1-02-g <AC Sinusoidal Waveform>

The peak value of the voltage across a coil is directly related
to the applied frequency (w = 2rf), the inductance of the
coil L, and the peak value of the applied current I ,. A plot of
v, and i, in Fig. 14.7 reveals that for an inductor, v, leads i,
by 90°, ori, lags v, by 90°.

The quantity wL, called the reactance (from the word reaction) of an
inductor, 1s symbolically represented by X, and is measured in ohms;
that is,

X, = wL| (ohms, ) (14.4)

In an Ohm’s law format, its magnitude can be determined from

X, = — | (ohms, () (14.5)

Once the reactance is known, the peak value of the voltage or current
can be found from the other by simply applying Ohm’s law as follows:

vV
I, == (14.6)

X L
and v, =1,X, (14.7)

Capacitor

Let us now examine the capacitive configuration of Fig. 14.8. For the ca-
pacitor, we will determine i for a particular voltage across the element rather
than the voltage as was determined for the inductive element. When this
approach reaches its conclusion, we will know the relationship between the
voltage and current and the opposition level to sinusoidally applied emfs.
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C: ipleads ve by 90°

b
: e
Ly 7 /IC
* _T——|g & T 3. 27
C == vc =V, sinwt 2 908 2 2
o FIG. 14.9
The current of a purely capacitive element
FIG. 14.8 leads the voltage across the element by 90°.
For the capacitor of Fig. 14.8, we recall from Chapter 10 that
_ dv,
ir = C—=
dt
Substituting
ve = V_sinwt

and, applying differentiation, we obtain
. d .
ir = C—— = C—(V,sinwt ) = wCV,, coswt
C dt d f( m ) m

so that

ic = wCV, sin(wr + 907)

The peak value for the current of a capacitor is directly
related to the applied frequency (w = 2rf), the capacitance
of the capacitor (C), and the peak value of the applied
voltage V,,,. The plot of Fig. 14.9 reveals that for a capacitor,
ic leads v, or v, lags i, by 90°.

The quantity 1/wC, called the reactance of a capacitor, is symboli-
cally represented by X . and 1s measured in ohms; that is,

X, = — | (ohms, Q) (14.8)

In an Ohm’s law format, its magnitude can be determined from

X, = —= | (ohms, Q) (14.9)
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Once the reactance is known, the peak value of the voltage or current
can be found from the other by simply applying Ohm’s law as follows:

I, = Yo (14.10)
X
and v =1 X, (14.11)
To summarize...
In the inductive circuit,
7 = ‘i;_; (14.12a)
and through integration:
. % [opar (14.12b)
In the capacitive circuit,
du
i = C—=% 14.13a
= dt ( )
and through integration:
Ve = % [icar (14.13b)

If the source current leads the applied voltage, the network
is predominantly capacitive, and if the applied voltage leads
the source current, it is predominantly inductive.
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EXAMPLE 14.3 The current through a 0.1 H coil is provided. Find the
sinusoidal expression for the voltage across the coil. Sketch the v and i

CUrves.

i = 10 sin 377t
i

d.
b. i = 7sin(377t — 70°)

Solutions:

a. Eq. (144): X, = wL = (377 rad/s)(0.1 H) = 37.7 Q
Eq.(14.7): V,, = I, X, = (10 A)(37.7Q) = 377V

and we know that for a coil v leads i by 90°. Therefore,

v = 377sin(377¢ + 90°)

The curves are sketched in Fig. 14.12.

[ ]
v —V, =377V
v leads i by 90° I = 10A
90° = i
-
_m 0 = ™ 3 2T«
FIG. 14.12

Example 14.3(a).

b. X, remains at 37.7 ().
V, = 1,X; = (TA)BT7.7Q) = 2639V
and we know that for a coil v leads i by 90°. Therefore,
v = 263.9sin(377t — 70° + 90°)
and
v = 263.9 sin(377t + 20°)
The curves are sketched in Fig. 14.13.
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V, = 2639V

vy,

I, =T7A
1 |
2 . w ™ 3 2w o
_—l—- 70° Li 2"
\_w_)
90°
v leads i by 90°.
FIG. 14.13

Example 14.3(b).

5. Average Power and Power Factor

To demonstrate this, consider the relatively simple configuration in
Fig. 14.26, where an 8 V peak sinusoidal voltage is applied across a 2 ()
resistor. When the voltage is at its positive peak, the power delivered at
that instant is 32 W, as shown in the figure. At the midpoint of 4 V, the
instantaneous power delivered drops to 8 W; when the voltage crosses
the axis, it drops to 0 W. Note, however, that when the applied voltage is
at its negative peak, the current may reverse, but at that instant, 32 W is
still being delivered to the resistor.

Nig=4A O V=24

+

BVR<Z20Q 4VR<20

- ‘\p:;;};‘- - poitR

U - 32W =8W

FIG. 14.26
Demonstrating that power is delivered at every instant of a sinusoidal
voltage waveform (except vy = 0 V).
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The fact that the power curve is always above the horizontal
axis reveals that power is being delivered to the load at each
instant of time of the applied sinusoidal voltage.

Any portion of the power curve below the axis reveals that power
is being returned to the source. The average value of the power curve
occurs at a level equal to VI /2, as shown in Fig. 14.27. This power

nrom

Power
delivered to
element by
source

Power
returned to
source by
element

FIG. 14.27
Power versus time for a purely resistive load.

Average or Real Power

If we substitute the equation for the peak value in terms of the rms
value as

2Vl

rms = rms

% (V2 Vo )(V2

P — m_m rms) _

" 2 2 2

we find that the average or real power delivered to a resistor takes on the
following very convenient form:

P, = V.l ims (14.14)
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i =1, sin(wf+0)
O

P —

v=1V, sin (@ +06,) Load

FIG. 14.28

The power delivered at each instant of time is then defined by
p=wvi =V _sin(wt + 6,)1, sin(wr + 6.)
=V I sin(wt + 6 )sin(wt + 6,)

m m

where #,, is simply the phase angle associated with the applied voltage
and #. is the phase angle associated with the resulting current.
Using the trigonometric identity
cos(A — B) — cos(A + B)
2

we see that the function sin(wt + 6, )sin(w? + #.) becomes

sin Asin B =

sin(wt + 6, )sin(wt + 6. )
_cos[(wt +0,) — (wt +6,)] — cos[(wt + 0,) + (wr + 6,)]

2
cos(f, —0.) —cosQuwt + 6, + 6.)
N 2
so that
Fixed value Time-varying (due to wit in equation)

p = [ Ll cos(s, - )] - |72 cos(2ur + 0, =)

simply the difference in phase angles

A plot of v, i, and p on the same set of axes is shown in Fig. 14.29.
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FIG. 14.29
Defining the average power for a sinusoidal ac network.

energy. This term is referred to as the average power or real power as
introduced earlier. The angle (6, — 6,) is the phase angle between v
and /. Since cos(—a) = cos a,

the magnitude of average power delivered is independent of
whether v leads i or i leads v.

Defining € as equal to |6, — 6,|, where || indicates that only the magni-
tude is important and the sign is immaterial, we have

2l — Y—%’-"— cos 6| (watts, W) (14.15)
where P is the average power in watts. This equation can also be
written

V AT
P = (i)(i)cosﬁ
V212
= V Vﬂi d I i
or, since = —= an = =
eff ‘\"IE eff ‘\‘6
Eq. (14.15) becomes
P =Vl cost (14.16)

Let us now apply Egs. (14.15) and (14.16) to the basic R, L, and C
elements.
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Resistor

In a purely resistive circuit, since v and i are in phase, |#, — 6] = 6 = 0°,
and cosf® = cos0° = 1, so that

V I
P=tt = Vol | (W) (14.17)
. VI"ITIS
or, since [.. = R
V2
then P=—= LRl (W (14.18)
Inductor
In a purely inductive circuit, since v leads i by 90°, |8, — 6.| = 6 =

|—90°] = 90°. Therefore,

P = —V”i;’" cos 90° = _szlm () =0W

The average power or power dissipated by the ideal
inductor (no associated resistance) is zero watts.

Capacitor

In a purely capacitive circuit, since i leads v by 90°, |6, — 0. = 6 =
|—90°| = 90°. Therefore,

P = % cos(90°) = % () =0W

The average power or power dissipated by the ideal
capacitor (no associated resistance) is zero watts.
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EXAMPLE 14.11 Determine the average power delivered to net-
works having the following input voltage and current:
a. v = 100sin(wr + 40°)
i = 20sin(wr + 70°)
b. v = 150sin(wr — 70°)
i = 3sin(wt — 50%)

Solutions:

a. V, = 100,60, = 40°
I =20A,0 = 70°

0 =10, — 6,1 = 140° — 709 = |-30°| = 30°
and
VI
P==2c0s0 = (100 V;(zo A) 05(30°) = (1000 W)(0.866)
— 866 W
bV =150V, 0, = —70°
m — 3 A" 91' = _500
0 =16, — 6,1 = |-70° — (=50°)
— |—70° + 50° = [—20°] = 20°
and
VI
P = ZZ2 cos g = d50 ";)(3 A) 0s(20°) = (225 W)(0.9397)
— 21143 W

Power Factor

In the equation P = (V, 1, /2)cos @, the factor that has significant con-
trol over the delivered power level is the cos fl. No matter how large the
voltage or current, if cos § = 0, the power is zero; if cos § = 1, the
power delivered is a maximum. Since it has such control, the expression
was given the name power factor and is defined by

Power factor = F, = cos 0 (14.19)
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In terms of the average power and the terminal voltage and current,

— 14.20
v ] ( )

The terms leading and lagging are often written in conjunction
with the power factor. They are defined by the current through
the load. If the current leads the voltage across a load, the
load has a leading power factor. If the current lags the voltage
across the load, the load has a lagging power factor. In other
words, capacitive networks have leading power factors, and
inductive networks have lagging power factors.

— - —
Ip=5A Fp=1 Iy=5A Fp=0
P =250W

P=0W
+ L +
Em@) 100V RZ200 Em®100\r'

20 2

&
200,

FIG. 14.30 FIG. 14.31
Purely resistive load with F, = 1. Purely inductive load with F, = 0.

EXAMPLE 14.12 Determine the power factors of the following
loads, and indicate whether they are leading or lagging:

a. Fig. 14.32
b. Fig. 14.33
c. Fig. 14.34

Solutions:

a. F,=cosfl = cos|0,— 0,| = cos| =20° — 40°| = cos60° = 0.5 leading
b. F,=cos|f, — 0,|=cos|80° — 30°| = cos50° = 0.64 lagging

— i=2sin(wt +40%)

+

F =2 Load | v=50sin(wt —20°) 0

v

_ v = 120 sin(wr + 80°)
| i = 5sin(wr + 30°)

FIG. 14.32 FIG. 14.33
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7. _Glossary — English/Chinese Translation

English Chinese
sinusoidal waveform IESZiRT
average and rms values SEEER RIS (B

average power and rms power SEAITOERA] RUS T

degrees and radians FESRIGIEE
angular velocity FREE
frequency and period SREFEEA

phase lead and phase lag GiEVE 2T S WA =
peak value (&

power factor ThEEREEL
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