Question 1 (10-23)

For the network of Fig. 10.83:

- a. Find the mathematical expression for the voltage across the capacitor after the switch is thrown into position 1.
- **b.** Repeat part (a) for the current i_C .
- c. Find the mathematical expressions for the voltage v_C and current i_C if the switch is thrown into position 2 at a time equal to five time constants of the charging circuit.
- **d.** Plot the waveforms of v_C and i_C for a period of time extending from t = 0 to $t = 30 \mu s$.

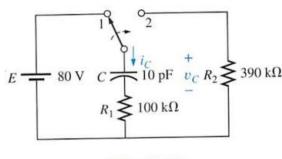


FIG. 10.83 Problem 23.

Question 2 (10-27)

- *27. The capacitor of Fig. 10.87 is initially charged to 12 V with the polarity shown.
 - **a.** Find the mathematical expressions for the voltage v_C and the current i_C when the switch is closed.
 - **b.** Sketch the waveforms for v_C and i_C .

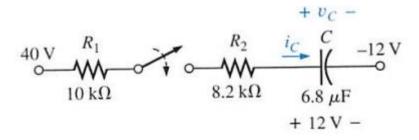


FIG. 10.87 Problem 27.

Question 3 (10-41)

41. Find the waveform for the average current if the voltage across a $0.06-\mu F$ capacitor is as shown in Fig. 10.99.

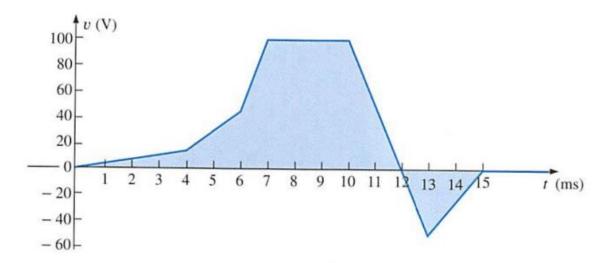


FIG. 10.99 Problem 41.

Question 4 (12-10)

10. Sketch the waveform for the voltage induced across a 0.2-H coil if the current through the coil is as shown in Fig. 12.65.

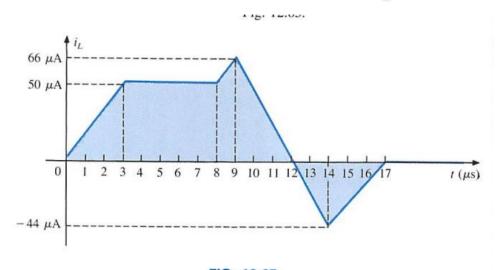
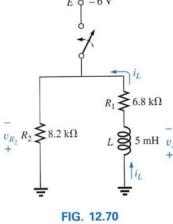



FIG. 12.65 Problem 10.

Question 5 (12-15)

- *15. For the network of Fig. 12.70:
 - a. Write the mathematical expression for the current i_L and the voltage v_L following the closing of the switch.
 - **b.** Determine the mathematical expressions for i_L and v_L if the switch is opened after a period of five time constants has passed.
 - **c.** Sketch the waveforms of i_L and v_L for the time periods defined by parts (a) and (b).
 - **d.** Sketch the waveform for the voltage across R_2 for the same period of time encompassed by i_L and v_L . Take careful note of the defined polarities and directions of Fig. 12.70.

Problem 15.