EXAMPLE 10.6 For the circuit in Fig. 10.38:

- a. Find the mathematical expression for the transient behavior of v_C , i_C , and v_R if the switch is closed at t=0 s.
- b. Plot the waveform of $\upsilon_{\mathcal{C}}$ versus the time constant of the network.
- c. Plot the waveform of v_C versus time.
- d. Plot the waveforms of i_C and v_R versus the time constant of the network.
- e. What is the value of v_C at t = 20 ms?
- f. On a practical basis, how much time must pass before we can assume that the charging phase has passed?
- g. When the charging phase has passed, how much charge is sitting on the plates?

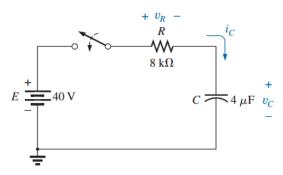


FIG. 10.38

Transient network for Example 10.6.

Question 2

EXAMPLE 10.9 For the network in Fig. 10.49:

- a. Find the mathematical expression for the transient behavior of the voltage across the capacitor if the switch is thrown into position 1 at $t=0\,\mathrm{s}$.
- b. Find the mathematical expression for the transient behavior of the voltage across the capacitor if the switch is moved to position 2 at $t = 1\tau$.

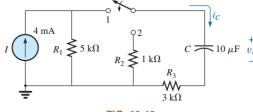


FIG. 10.49

Network to be analyzed in Example 10.9.

- c. Plot the resulting waveform for the voltage $\upsilon_{\it C}$ as determined by parts (a) and (b).
- d. Repeat parts (a)–(c) for the current i_C .

Question 3

EXAMPLE 10.11 For the network in Fig. 10.60:

- a. Find the mathematical expression for the transient behavior of the voltage v_C and the current i_C following the closing of the switch (position 1 at t = 0 s).
- b. Find the mathematical expression for the voltage v_C and the current i_C as a function of time if the switch is thrown into position 2 at t = 9 ms.
- c. Draw the resultant waveforms of parts (a) and (b) on the same time axis.

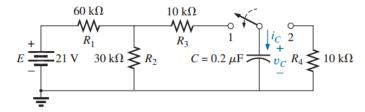


FIG. 10.60 Example 10.11.

Question 4

EXAMPLE 11.7 Switch S_1 in Fig. 11.51 has been closed for a long time. At t = 0 s, S_1 is opened at the same instant that S_2 is closed to avoid an interruption in current through the coil.

a. Find the initial current through the coil. Pay particular attention to its direction.

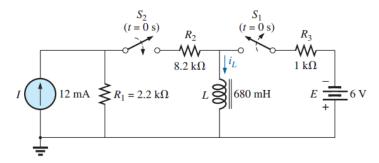


FIG. 11.51 Example 11.7.

- b. Find the mathematical expression for the current i_L following the closing of switch S_2 .
- c. Sketch the waveform for i_L .