Question 1

Fig. 3-7
Assume that V_{3} has the same polarity as V_{1}. Applying KVL and starting from the lower left corner,

$$
\begin{aligned}
V_{1}-I(5.0)-V_{2}-I(20.0)+V_{3} & =0 \\
50.0-2.0-10.0-8.0+V_{3} & =0 \\
V_{3} & =-30.0 \mathrm{~V}
\end{aligned}
$$

Terminal b is positive with respect to terminal a.

Question 2

a and b comprise one node. Applying KCL,

$$
2.0+7.0+I_{1}=3.0 \quad \text { or } \quad I_{1}=-6.0 \mathrm{~A}
$$

Also, c and d comprise a single node. Thus,

$$
4.0+6.0=I_{2}+1.0 \quad \text { or } \quad I_{2}=9.0 \mathrm{~A}
$$

Fig. 3-8

Question 3

Fig. 3-9
The branch currents within the enclosed area cannot be calculated since no values of the resistors are given. However, KCL applies to the network taken as a single node. Thus,

$$
2.0-3.0-4.0-I=0 \quad \text { or } \quad I=-5.0 \mathrm{~A}
$$

Question 4

Fig. 3-14
The equivalent resistances to the left and right of nodes a and b are

$$
\begin{aligned}
R_{\text {eq(left })} & =5+\frac{(12)(8)}{20}=9.8 \Omega \\
R_{\text {eq(right })} & =\frac{(6)(3)}{9}=2.0 \Omega
\end{aligned}
$$

Now referring to the reduced network of Fig. 3-14(b),

$$
\begin{aligned}
& I_{3}=\frac{2.0}{11.8}(13.7)=2.32 \mathrm{~A} \\
& I_{4}=\frac{9.8}{11.8}(13.7)=11.38 \mathrm{~A}
\end{aligned}
$$

Then referring to the original network,

$$
\begin{array}{ll}
I_{1}=\frac{8}{20}(2.32)=0.93 \mathrm{~A} & I_{2}=2.32-0.93=1.39 \mathrm{~A} \\
I_{5}=\frac{3}{9}(11.38)=3.79 \mathrm{~A} & I_{6}=11.38-3.79=7.59 \mathrm{~A}
\end{array}
$$

Question 5

Fig. 4-1
Currents I_{1}, I_{2}, and I_{3} are assigned to the branches as shown. Applying KCL at node a,

$$
\begin{equation*}
I_{1}=I_{2}+I_{3} \tag{l}
\end{equation*}
$$

The voltage $V_{a b}$ can be written in terms of the elements in each of the branches; $V_{a b}=20-I_{1}(5), V_{a b}=I_{3}(10)$ and $V_{a b}=I_{2}(2)+8$. Then the following equations can be written

$$
\begin{align*}
& 20-I_{1}(5)=I_{3}(10) \tag{2}\\
& 20-I_{1}(5)=I_{2}(2)+8 \tag{3}
\end{align*}
$$

Solving the three equations (1), (2), and (3) simultaneously gives $I_{1}=2 \mathrm{~A}, I_{2}=1 \mathrm{~A}$, and $I_{3}=1 \mathrm{~A}$.

Question 6

EXAMPLE 4.2 Obtain the current in each branch of the network shown in Fig. 4-2 (same as Fig. 4-1) using the mesh current method.

Fig. 4-2

The currents I_{1} and I_{2} are chosen as shown on the circuit diagram. Applying KVL around the left loop, starting at point α,

$$
-20+5 I_{1}+10\left(I_{1}-I_{2}\right)=0
$$

and around the right loop, starting at point β,

$$
8+10\left(I_{2}-I_{1}\right)+2 I_{2}=0
$$

Rearranging terms,

$$
\begin{align*}
15 I_{1}-10 I_{2} & =20 \tag{4}\\
-10 I_{1}+12 I_{2} & =-8 \tag{5}
\end{align*}
$$

Solving (4) and (5) simultaneously results in $I_{1}=2 \mathrm{~A}$ and $I_{2}=1 \mathrm{~A}$. The current in the center branch, shown dotted, is $I_{1}-I_{2}=1 \mathrm{~A}$. In Example 4.1 this was branch current I_{3}.

